Spaces:
Runtime error
Runtime error
''' | |
* Copyright (c) 2023 Salesforce, Inc. | |
* All rights reserved. | |
* SPDX-License-Identifier: Apache License 2.0 | |
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/ | |
* By Can Qin | |
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet | |
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala | |
''' | |
import sys | |
import config | |
import cv2 | |
import einops | |
import gradio as gr | |
import numpy as np | |
import torch | |
import random | |
from pytorch_lightning import seed_everything | |
from annotator.util import resize_image, HWC3 | |
from annotator.uniformer_base import UniformerDetector | |
from annotator.hed import HEDdetector | |
from annotator.canny import CannyDetector | |
from annotator.midas import MidasDetector | |
from annotator.outpainting import Outpainter | |
from annotator.openpose import OpenposeDetector | |
from annotator.inpainting import Inpainter | |
from annotator.grayscale import GrayscaleConverter | |
from annotator.blur import Blurrer | |
import cvlib as cv | |
from utils import create_model, load_state_dict | |
from lib.ddim_hacked import DDIMSampler | |
import pdb | |
apply_uniformer = UniformerDetector() | |
apply_midas = MidasDetector() | |
apply_canny = CannyDetector() | |
apply_hed = HEDdetector() | |
model_outpainting = Outpainter() | |
apply_openpose = OpenposeDetector() | |
model_grayscale = GrayscaleConverter() | |
model_blur = Blurrer() | |
model_inpainting = Inpainter() | |
def midas(img, res): | |
img = resize_image(HWC3(img), res) | |
results = apply_midas(img) | |
return results | |
def outpainting(img, res, rand_h, rand_w): | |
img = resize_image(HWC3(img), res) | |
result = model_outpainting(img, rand_h, rand_w) | |
return result | |
def grayscale(img, res): | |
img = resize_image(HWC3(img), res) | |
result = model_grayscale(img) | |
return result | |
def blur(img, res, ksize): | |
img = resize_image(HWC3(img), res) | |
result = model_blur(img, ksize) | |
return result | |
def inpainting(img, res, rand_h, rand_h_1, rand_w, rand_w_1): | |
img = resize_image(HWC3(img), res) | |
result = model_inpainting(img, rand_h, rand_h_1, rand_w, rand_w_1) | |
return result | |
model = create_model('./models/cldm_v15_unicontrol.yaml').cpu() | |
model_path = 'https://huggingface.co/Robert001/UniControl-Model/blob/main/unicontrol_v1.1.ckpt' | |
model.load_state_dict(load_state_dict(model_path, location='cuda'), strict=False) | |
model = model.cuda() | |
ddim_sampler = DDIMSampler(model) | |
task_to_name = {'hed': 'control_hed', 'canny': 'control_canny', 'seg': 'control_seg', 'segbase': 'control_seg', | |
'depth': 'control_depth', 'normal': 'control_normal', 'openpose': 'control_openpose', | |
'bbox': 'control_bbox', 'grayscale': 'control_grayscale', 'outpainting': 'control_outpainting', | |
'hedsketch': 'control_hedsketch', 'inpainting': 'control_inpainting', 'blur': 'control_blur', | |
'grayscale': 'control_grayscale'} | |
name_to_instruction = {"control_hed": "hed edge to image", "control_canny": "canny edge to image", | |
"control_seg": "segmentation map to image", "control_depth": "depth map to image", | |
"control_normal": "normal surface map to image", "control_img": "image editing", | |
"control_openpose": "human pose skeleton to image", "control_hedsketch": "sketch to image", | |
"control_bbox": "bounding box to image", "control_outpainting": "image outpainting", | |
"control_grayscale": "gray image to color image", "control_blur": "deblur image to clean image", | |
"control_inpainting": "image inpainting"} | |
def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, | |
strength, scale, seed, eta, low_threshold, high_threshold, condition_mode): | |
with torch.no_grad(): | |
img = resize_image(HWC3(input_image), image_resolution) | |
H, W, C = img.shape | |
if condition_mode == True: | |
detected_map = apply_canny(img, low_threshold, high_threshold) | |
detected_map = HWC3(detected_map) | |
else: | |
detected_map = 255 - img | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
task = 'canny' | |
task_dic = {} | |
task_dic['name'] = task_to_name[task] | |
task_instruction = name_to_instruction[task_dic['name']] | |
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :] | |
cond = {"c_concat": [control], | |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)], | |
"task": task_dic} | |
un_cond = {"c_concat": None if guess_mode else [control], | |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, | |
shape, cond, verbose=False, eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
x_samples = model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, | |
255).astype( | |
np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [255 - detected_map] + results | |
def process_hed(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, | |
guess_mode, strength, scale, seed, eta, condition_mode): | |
with torch.no_grad(): | |
input_image = HWC3(input_image) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
if condition_mode == True: | |
detected_map = apply_hed(resize_image(input_image, detect_resolution)) | |
detected_map = HWC3(detected_map) | |
else: | |
detected_map = img | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
task = 'hed' | |
task_dic = {} | |
task_dic['name'] = task_to_name[task] | |
task_instruction = name_to_instruction[task_dic['name']] | |
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :] | |
cond = {"c_concat": [control], | |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)], | |
"task": task_dic} | |
un_cond = {"c_concat": None if guess_mode else [control], | |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, | |
shape, cond, verbose=False, eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
x_samples = model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, | |
255).astype( | |
np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [detected_map] + results | |
def process_depth(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, | |
guess_mode, strength, scale, seed, eta, condition_mode): | |
with torch.no_grad(): | |
input_image = HWC3(input_image) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
if condition_mode == True: | |
detected_map, _ = apply_midas(resize_image(input_image, detect_resolution)) | |
detected_map = HWC3(detected_map) | |
else: | |
detected_map = img | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
task = 'depth' | |
task_dic = {} | |
task_dic['name'] = task_to_name[task] | |
task_instruction = name_to_instruction[task_dic['name']] | |
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :] | |
cond = {"c_concat": [control], | |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)], | |
"task": task_dic} | |
un_cond = {"c_concat": None if guess_mode else [control], | |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, | |
shape, cond, verbose=False, eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
x_samples = model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, | |
255).astype( | |
np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [detected_map] + results | |
def process_normal(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, | |
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode): | |
with torch.no_grad(): | |
input_image = HWC3(input_image) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
if condition_mode == True: | |
_, detected_map = apply_midas(resize_image(input_image, detect_resolution)) | |
detected_map = HWC3(detected_map) | |
else: | |
detected_map = img | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
task = 'normal' | |
task_dic = {} | |
task_dic['name'] = task_to_name[task] | |
task_instruction = name_to_instruction[task_dic['name']] | |
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :] | |
cond = {"c_concat": [control], | |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)], | |
"task": task_dic} | |
un_cond = {"c_concat": None if guess_mode else [control], | |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, | |
shape, cond, verbose=False, eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
x_samples = model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, | |
255).astype( | |
np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [detected_map] + results | |
def process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, | |
guess_mode, strength, scale, seed, eta, condition_mode): | |
with torch.no_grad(): | |
input_image = HWC3(input_image) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
if condition_mode == True: | |
detected_map, _ = apply_openpose(resize_image(input_image, detect_resolution)) | |
detected_map = HWC3(detected_map) | |
else: | |
detected_map = img | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
task = 'openpose' | |
task_dic = {} | |
task_dic['name'] = task_to_name[task] | |
task_instruction = name_to_instruction[task_dic['name']] | |
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :] | |
cond = {"c_concat": [control], | |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)], | |
"task": task_dic} | |
un_cond = {"c_concat": None if guess_mode else [control], | |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, | |
shape, cond, verbose=False, eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
x_samples = model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, | |
255).astype( | |
np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [detected_map] + results | |
def process_seg(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, | |
guess_mode, strength, scale, seed, eta, condition_mode): | |
with torch.no_grad(): | |
input_image = HWC3(input_image) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
if condition_mode == True: | |
detected_map = apply_uniformer(resize_image(input_image, detect_resolution)) | |
else: | |
detected_map = img | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
task = 'seg' | |
task_dic = {} | |
task_dic['name'] = task_to_name[task] | |
task_instruction = name_to_instruction[task_dic['name']] | |
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :] | |
cond = {"c_concat": [control], | |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)], | |
"task": task_dic} | |
un_cond = {"c_concat": None if guess_mode else [control], | |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, | |
shape, cond, verbose=False, eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
x_samples = model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, | |
255).astype( | |
np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [detected_map] + results | |
color_dict = { | |
'background': (0, 0, 100), | |
'person': (255, 0, 0), | |
'bicycle': (0, 255, 0), | |
'car': (0, 0, 255), | |
'motorcycle': (255, 255, 0), | |
'airplane': (255, 0, 255), | |
'bus': (0, 255, 255), | |
'train': (128, 128, 0), | |
'truck': (128, 0, 128), | |
'boat': (0, 128, 128), | |
'traffic light': (128, 128, 128), | |
'fire hydrant': (64, 0, 0), | |
'stop sign': (0, 64, 0), | |
'parking meter': (0, 0, 64), | |
'bench': (64, 64, 0), | |
'bird': (64, 0, 64), | |
'cat': (0, 64, 64), | |
'dog': (192, 192, 192), | |
'horse': (32, 32, 32), | |
'sheep': (96, 96, 96), | |
'cow': (160, 160, 160), | |
'elephant': (224, 224, 224), | |
'bear': (32, 0, 0), | |
'zebra': (0, 32, 0), | |
'giraffe': (0, 0, 32), | |
'backpack': (32, 32, 0), | |
'umbrella': (32, 0, 32), | |
'handbag': (0, 32, 32), | |
'tie': (96, 0, 0), | |
'suitcase': (0, 96, 0), | |
'frisbee': (0, 0, 96), | |
'skis': (96, 96, 0), | |
'snowboard': (96, 0, 96), | |
'sports ball': (0, 96, 96), | |
'kite': (160, 0, 0), | |
'baseball bat': (0, 160, 0), | |
'baseball glove': (0, 0, 160), | |
'skateboard': (160, 160, 0), | |
'surfboard': (160, 0, 160), | |
'tennis racket': (0, 160, 160), | |
'bottle': (224, 0, 0), | |
'wine glass': (0, 224, 0), | |
'cup': (0, 0, 224), | |
'fork': (224, 224, 0), | |
'knife': (224, 0, 224), | |
'spoon': (0, 224, 224), | |
'bowl': (64, 64, 64), | |
'banana': (128, 64, 64), | |
'apple': (64, 128, 64), | |
'sandwich': (64, 64, 128), | |
'orange': (128, 128, 64), | |
'broccoli': (128, 64, 128), | |
'carrot': (64, 128, 128), | |
'hot dog': (192, 64, 64), | |
'pizza': (64, 192, 64), | |
'donut': (64, 64, 192), | |
'cake': (192, 192, 64), | |
'chair': (192, 64, 192), | |
'couch': (64, 192, 192), | |
'potted plant': (96, 32, 32), | |
'bed': (32, 96, 32), | |
'dining table': (32, 32, 96), | |
'toilet': (96, 96, 32), | |
'tv': (96, 32, 96), | |
'laptop': (32, 96, 96), | |
'mouse': (160, 32, 32), | |
'remote': (32, 160, 32), | |
'keyboard': (32, 32, 160), | |
'cell phone': (160, 160, 32), | |
'microwave': (160, 32, 160), | |
'oven': (32, 160, 160), | |
'toaster': (224, 32, 32), | |
'sink': (32, 224, 32), | |
'refrigerator': (32, 32, 224), | |
'book': (224, 224, 32), | |
'clock': (224, 32, 224), | |
'vase': (32, 224, 224), | |
'scissors': (64, 96, 96), | |
'teddy bear': (96, 64, 96), | |
'hair drier': (96, 96, 64), | |
'toothbrush': (160, 96, 96) | |
} | |
def process_bbox(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, | |
strength, scale, seed, eta, confidence, nms_thresh, condition_mode): | |
with torch.no_grad(): | |
input_image = HWC3(input_image) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
if condition_mode == True: | |
bbox, label, conf = cv.detect_common_objects(input_image, confidence=confidence, nms_thresh=nms_thresh) | |
mask = np.zeros((input_image.shape), np.uint8) | |
if len(bbox) > 0: | |
order_area = np.zeros(len(bbox)) | |
# order_final = np.arange(len(bbox)) | |
area_all = 0 | |
for idx_mask, box in enumerate(bbox): | |
x_1, y_1, x_2, y_2 = box | |
x_1 = 0 if x_1 < 0 else x_1 | |
y_1 = 0 if y_1 < 0 else y_1 | |
x_2 = input_image.shape[1] if x_2 < 0 else x_2 | |
y_2 = input_image.shape[0] if y_2 < 0 else y_2 | |
area = (x_2 - x_1) * (y_2 - y_1) | |
order_area[idx_mask] = area | |
area_all += area | |
ordered_area = np.argsort(-order_area) | |
for idx_mask in ordered_area: | |
box = bbox[idx_mask] | |
x_1, y_1, x_2, y_2 = box | |
x_1 = 0 if x_1 < 0 else x_1 | |
y_1 = 0 if y_1 < 0 else y_1 | |
x_2 = input_image.shape[1] if x_2 < 0 else x_2 | |
y_2 = input_image.shape[0] if y_2 < 0 else y_2 | |
mask[y_1:y_2, x_1:x_2, :] = color_dict[label[idx_mask]] | |
detected_map = mask | |
else: | |
detected_map = img | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
task = 'bbox' | |
task_dic = {} | |
task_dic['name'] = task_to_name[task] | |
task_instruction = name_to_instruction[task_dic['name']] | |
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :] | |
cond = {"c_concat": [control], | |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)], | |
"task": task_dic} | |
un_cond = {"c_concat": None if guess_mode else [control], | |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, | |
shape, cond, verbose=False, eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
x_samples = model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, | |
255).astype( | |
np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [detected_map] + results | |
def process_outpainting(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, | |
strength, scale, seed, eta, h_ratio, w_ratio, condition_mode): | |
with torch.no_grad(): | |
input_image = HWC3(input_image) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
if condition_mode == True: | |
detected_map = outpainting(input_image, image_resolution, h_ratio, w_ratio) | |
else: | |
detected_map = img | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
task = 'outpainting' | |
task_dic = {} | |
task_dic['name'] = task_to_name[task] | |
task_instruction = name_to_instruction[task_dic['name']] | |
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :] | |
cond = {"c_concat": [control], | |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)], | |
"task": task_dic} | |
un_cond = {"c_concat": None if guess_mode else [control], | |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, | |
shape, cond, verbose=False, eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
x_samples = model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, | |
255).astype( | |
np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [detected_map] + results | |
def process_sketch(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, | |
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode): | |
with torch.no_grad(): | |
input_image = HWC3(input_image) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
if condition_mode == True: | |
detected_map = apply_hed(resize_image(input_image, detect_resolution)) | |
detected_map = HWC3(detected_map) | |
# sketch the hed image | |
retry = 0 | |
cnt = 0 | |
while retry == 0: | |
threshold_value = np.random.randint(110, 160) | |
kernel_size = 3 | |
alpha = 1.5 | |
beta = 50 | |
binary_image = cv2.threshold(detected_map, threshold_value, 255, cv2.THRESH_BINARY)[1] | |
inverted_image = cv2.bitwise_not(binary_image) | |
smoothed_image = cv2.GaussianBlur(inverted_image, (kernel_size, kernel_size), 0) | |
sketch_image = cv2.convertScaleAbs(smoothed_image, alpha=alpha, beta=beta) | |
if np.sum(sketch_image < 5) > 0.005 * sketch_image.shape[0] * sketch_image.shape[1] or cnt == 5: | |
retry = 1 | |
else: | |
cnt += 1 | |
detected_map = sketch_image | |
else: | |
detected_map = img | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
task = 'hedsketch' | |
task_dic = {} | |
task_dic['name'] = task_to_name[task] | |
task_instruction = name_to_instruction[task_dic['name']] | |
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :] | |
cond = {"c_concat": [control], | |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)], | |
"task": task_dic} | |
un_cond = {"c_concat": None if guess_mode else [control], | |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, | |
shape, cond, verbose=False, eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
x_samples = model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, | |
255).astype( | |
np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [detected_map] + results | |
def process_colorization(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, | |
strength, scale, seed, eta, condition_mode): | |
with torch.no_grad(): | |
input_image = HWC3(input_image) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
if condition_mode == True: | |
detected_map = grayscale(input_image, image_resolution) | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
detected_map = detected_map[:, :, np.newaxis] | |
detected_map = detected_map.repeat(3, axis=2) | |
else: | |
detected_map = img | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
task = 'grayscale' | |
task_dic = {} | |
task_dic['name'] = task_to_name[task] | |
task_instruction = name_to_instruction[task_dic['name']] | |
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :] | |
cond = {"c_concat": [control], | |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)], | |
"task": task_dic} | |
un_cond = {"c_concat": None if guess_mode else [control], | |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, | |
shape, cond, verbose=False, eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
x_samples = model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, | |
255).astype( | |
np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [detected_map] + results | |
def process_deblur(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, | |
strength, scale, seed, eta, ksize, condition_mode): | |
with torch.no_grad(): | |
input_image = HWC3(input_image) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
if condition_mode == True: | |
detected_map = blur(input_image, image_resolution, ksize) | |
else: | |
detected_map = img | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
task = 'blur' | |
task_dic = {} | |
task_dic['name'] = task_to_name[task] | |
task_instruction = name_to_instruction[task_dic['name']] | |
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :] | |
cond = {"c_concat": [control], | |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)], | |
"task": task_dic} | |
un_cond = {"c_concat": None if guess_mode else [control], | |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, | |
shape, cond, verbose=False, eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
x_samples = model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, | |
255).astype( | |
np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [detected_map] + results | |
def process_inpainting(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, | |
strength, scale, seed, eta, h_ratio_t, h_ratio_d, w_ratio_l, w_ratio_r, condition_mode): | |
with torch.no_grad(): | |
input_image = HWC3(input_image) | |
img = resize_image(input_image, image_resolution) | |
H, W, C = img.shape | |
if condition_mode == True: | |
detected_map = inpainting(input_image, image_resolution, h_ratio_t, h_ratio_d, w_ratio_l, w_ratio_r) | |
else: | |
detected_map = img | |
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, 'b h w c -> b c h w').clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
seed_everything(seed) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
task = 'inpainting' | |
task_dic = {} | |
task_dic['name'] = task_to_name[task] | |
task_instruction = name_to_instruction[task_dic['name']] | |
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :] | |
cond = {"c_concat": [control], | |
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)], | |
"task": task_dic} | |
un_cond = {"c_concat": None if guess_mode else [control], | |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=True) | |
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples, | |
shape, cond, verbose=False, eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
x_samples = model.decode_first_stage(samples) | |
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, | |
255).astype( | |
np.uint8) | |
results = [x_samples[i] for i in range(num_samples)] | |
return [detected_map] + results | |
############################################################################################################ | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("UniControl Stable Diffusion Demo") | |
with gr.Tabs(): | |
with gr.TabItem("Canny"): | |
with gr.Row(): | |
gr.Markdown("## UniControl Stable Diffusion with Canny Edge Maps") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, | |
step=64) | |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
condition_mode = gr.Checkbox(label='Condition Extraction', value=True) | |
guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=40, step=1) | |
high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, | |
step=1) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright') | |
n_prompt = gr.Textbox(label="Negative Prompt", value='') | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, | |
height='auto') | |
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, | |
strength, scale, seed, eta, low_threshold, high_threshold, condition_mode] | |
run_button.click(fn=process_canny, inputs=ips, outputs=[result_gallery]) | |
with gr.TabItem("HED"): | |
with gr.Row(): | |
gr.Markdown("## UniControl Stable Diffusion with HED Maps") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, | |
step=64) | |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
condition_mode = gr.Checkbox(label='Condition Extraction', value=True) | |
guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
detect_resolution = gr.Slider(label="HED Resolution", minimum=128, maximum=1024, value=512, | |
step=1) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright') | |
n_prompt = gr.Textbox(label="Negative Prompt", value='') | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, | |
height='auto') | |
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, | |
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode] | |
run_button.click(fn=process_hed, inputs=ips, outputs=[result_gallery]) | |
with gr.TabItem("Sketch"): | |
with gr.Row(): | |
gr.Markdown("## UniControl Stable Diffusion with Sketch Maps") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, | |
step=64) | |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
condition_mode = gr.Checkbox(label='Condition Extraction', value=True) | |
guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
detect_resolution = gr.Slider(label="HED Resolution", minimum=128, maximum=1024, value=512, | |
step=1) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') | |
n_prompt = gr.Textbox(label="Negative Prompt", value='') | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, | |
height='auto') | |
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, | |
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode] | |
run_button.click(fn=process_sketch, inputs=ips, outputs=[result_gallery]) | |
with gr.TabItem("Depth"): | |
with gr.Row(): | |
gr.Markdown("## UniControl Stable Diffusion with Depth Maps") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, | |
step=64) | |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
condition_mode = gr.Checkbox(label='Condition Extraction', value=True) | |
guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384, | |
step=1) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright') | |
n_prompt = gr.Textbox(label="Negative Prompt", value='') | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, | |
height='auto') | |
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, | |
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode] | |
run_button.click(fn=process_depth, inputs=ips, outputs=[result_gallery]) | |
with gr.TabItem("Normal"): | |
with gr.Row(): | |
gr.Markdown("## UniControl Stable Diffusion with Normal Surface") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, | |
step=64) | |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
condition_mode = gr.Checkbox(label='Condition Extraction', value=True) | |
guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384, | |
step=1) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright') | |
n_prompt = gr.Textbox(label="Negative Prompt", value='') | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, | |
height='auto') | |
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, | |
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode] | |
run_button.click(fn=process_normal, inputs=ips, outputs=[result_gallery]) | |
with gr.TabItem("Human Pose"): | |
with gr.Row(): | |
gr.Markdown("## UniControl Stable Diffusion with Human Pose") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, | |
step=64) | |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
condition_mode = gr.Checkbox(label='Condition Extraction', value=True) | |
guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
detect_resolution = gr.Slider(label="OpenPose Resolution", minimum=128, maximum=1024, value=512, | |
step=1) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright') | |
n_prompt = gr.Textbox(label="Negative Prompt", value='') | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, | |
height='auto') | |
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, | |
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode] | |
run_button.click(fn=process_pose, inputs=ips, outputs=[result_gallery]) | |
with gr.TabItem("Segmentation"): | |
with gr.Row(): | |
gr.Markdown("## UniControl Stable Diffusion with Segmentation Maps (ADE20K)") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, | |
step=64) | |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
condition_mode = gr.Checkbox(label='Condition Extraction', value=True) | |
guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
detect_resolution = gr.Slider(label="Segmentation Resolution", minimum=128, maximum=1024, | |
value=512, step=1) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright') | |
n_prompt = gr.Textbox(label="Negative Prompt", value='') | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, | |
height='auto') | |
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, | |
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode] | |
run_button.click(fn=process_seg, inputs=ips, outputs=[result_gallery]) | |
with gr.TabItem("Bbox"): | |
with gr.Row(): | |
gr.Markdown("## UniControl Stable Diffusion with Object Bounding Boxes (MS-COCO)") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, | |
step=64) | |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
condition_mode = gr.Checkbox(label='Condition Extraction', value=True) | |
guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
confidence = gr.Slider(label="Confidence of Detection", minimum=0.1, maximum=1.0, value=0.4, | |
step=0.1) | |
nms_thresh = gr.Slider(label="Nms Threshold", minimum=0.1, maximum=1.0, value=0.5, step=0.1) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright') | |
n_prompt = gr.Textbox(label="Negative Prompt", value='') | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, | |
height='auto') | |
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, | |
strength, scale, seed, eta, confidence, nms_thresh, condition_mode] | |
run_button.click(fn=process_bbox, inputs=ips, outputs=[result_gallery]) | |
with gr.TabItem("Outpainting"): | |
with gr.Row(): | |
gr.Markdown("## UniControl Stable Diffusion with Image Outpainting") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, | |
step=64) | |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
condition_mode = gr.Checkbox(label='Condition Extraction', value=True) | |
guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
h_ratio = gr.Slider(label="Height Masking Ratio", minimum=20, maximum=80, value=50, step=1) | |
w_ratio = gr.Slider(label="Width Masking Ratio", minimum=20, maximum=80, value=50, step=1) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') | |
n_prompt = gr.Textbox(label="Negative Prompt", value='') | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, | |
height='auto') | |
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, | |
strength, scale, seed, eta, h_ratio, w_ratio, condition_mode] | |
run_button.click(fn=process_outpainting, inputs=ips, outputs=[result_gallery]) | |
with gr.TabItem("Inpainting"): | |
with gr.Row(): | |
gr.Markdown("## UniControl Stable Diffusion with Image Inpainting") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, | |
step=64) | |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
condition_mode = gr.Checkbox(label='Condition Extraction', value=True) | |
guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
h_ratio_t = gr.Slider(label="Height Masking Ratio (Top)", minimum=20, maximum=80, value=50, | |
step=1) | |
h_ratio_d = gr.Slider(label="Height Masking Ratio (Down)", minimum=20, maximum=80, value=50, | |
step=1) | |
w_ratio_l = gr.Slider(label="Width Masking Ratio (Left)", minimum=20, maximum=80, value=50, | |
step=1) | |
w_ratio_r = gr.Slider(label="Width Masking Ratio (Right)", minimum=20, maximum=80, value=50, | |
step=1) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') | |
n_prompt = gr.Textbox(label="Negative Prompt", value='') | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, | |
height='auto') | |
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, | |
strength, scale, seed, eta, h_ratio_t, h_ratio_d, w_ratio_l, w_ratio_r, condition_mode] | |
run_button.click(fn=process_inpainting, inputs=ips, outputs=[result_gallery]) | |
with gr.TabItem("Colorization"): | |
with gr.Row(): | |
gr.Markdown("## UniControl Stable Diffusion with Gray Image Colorization") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, | |
step=64) | |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
condition_mode = gr.Checkbox(label='Condition Extraction', value=True) | |
guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') | |
n_prompt = gr.Textbox(label="Negative Prompt", value='') | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, | |
height='auto') | |
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, | |
strength, scale, seed, eta, condition_mode] | |
run_button.click(fn=process_colorization, inputs=ips, outputs=[result_gallery]) | |
with gr.TabItem("Deblur"): | |
with gr.Row(): | |
gr.Markdown("## UniControl Stable Diffusion with Image Deblurring") | |
with gr.Row(): | |
with gr.Column(): | |
input_image = gr.Image(source='upload', type="numpy") | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, | |
step=64) | |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
condition_mode = gr.Checkbox(label='Condition Extraction', value=True) | |
guess_mode = gr.Checkbox(label='Guess Mode', value=False) | |
ksize = gr.Slider(label="Kernel Size", minimum=11, maximum=101, value=51, step=2) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=30, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed') | |
n_prompt = gr.Textbox(label="Negative Prompt", value='') | |
with gr.Column(): | |
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, | |
height='auto') | |
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode, | |
strength, scale, seed, eta, ksize, condition_mode] | |
run_button.click(fn=process_deblur, inputs=ips, outputs=[result_gallery]) | |
demo.launch() | |