Robert001's picture
first commit
b334e29
# Copyright (c) OpenMMLab. All rights reserved.
import torch
import torch.nn as nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.nn.modules.utils import _pair
from ..utils import deprecated_api_warning, ext_loader
ext_module = ext_loader.load_ext('_ext',
['roi_align_forward', 'roi_align_backward'])
class RoIAlignFunction(Function):
@staticmethod
def symbolic(g, input, rois, output_size, spatial_scale, sampling_ratio,
pool_mode, aligned):
from ..onnx import is_custom_op_loaded
has_custom_op = is_custom_op_loaded()
if has_custom_op:
return g.op(
'mmcv::MMCVRoiAlign',
input,
rois,
output_height_i=output_size[0],
output_width_i=output_size[1],
spatial_scale_f=spatial_scale,
sampling_ratio_i=sampling_ratio,
mode_s=pool_mode,
aligned_i=aligned)
else:
from torch.onnx.symbolic_opset9 import sub, squeeze
from torch.onnx.symbolic_helper import _slice_helper
from torch.onnx import TensorProtoDataType
# batch_indices = rois[:, 0].long()
batch_indices = _slice_helper(
g, rois, axes=[1], starts=[0], ends=[1])
batch_indices = squeeze(g, batch_indices, 1)
batch_indices = g.op(
'Cast', batch_indices, to_i=TensorProtoDataType.INT64)
# rois = rois[:, 1:]
rois = _slice_helper(g, rois, axes=[1], starts=[1], ends=[5])
if aligned:
# rois -= 0.5/spatial_scale
aligned_offset = g.op(
'Constant',
value_t=torch.tensor([0.5 / spatial_scale],
dtype=torch.float32))
rois = sub(g, rois, aligned_offset)
# roi align
return g.op(
'RoiAlign',
input,
rois,
batch_indices,
output_height_i=output_size[0],
output_width_i=output_size[1],
spatial_scale_f=spatial_scale,
sampling_ratio_i=max(0, sampling_ratio),
mode_s=pool_mode)
@staticmethod
def forward(ctx,
input,
rois,
output_size,
spatial_scale=1.0,
sampling_ratio=0,
pool_mode='avg',
aligned=True):
ctx.output_size = _pair(output_size)
ctx.spatial_scale = spatial_scale
ctx.sampling_ratio = sampling_ratio
assert pool_mode in ('max', 'avg')
ctx.pool_mode = 0 if pool_mode == 'max' else 1
ctx.aligned = aligned
ctx.input_shape = input.size()
assert rois.size(1) == 5, 'RoI must be (idx, x1, y1, x2, y2)!'
output_shape = (rois.size(0), input.size(1), ctx.output_size[0],
ctx.output_size[1])
output = input.new_zeros(output_shape)
if ctx.pool_mode == 0:
argmax_y = input.new_zeros(output_shape)
argmax_x = input.new_zeros(output_shape)
else:
argmax_y = input.new_zeros(0)
argmax_x = input.new_zeros(0)
ext_module.roi_align_forward(
input,
rois,
output,
argmax_y,
argmax_x,
aligned_height=ctx.output_size[0],
aligned_width=ctx.output_size[1],
spatial_scale=ctx.spatial_scale,
sampling_ratio=ctx.sampling_ratio,
pool_mode=ctx.pool_mode,
aligned=ctx.aligned)
ctx.save_for_backward(rois, argmax_y, argmax_x)
return output
@staticmethod
@once_differentiable
def backward(ctx, grad_output):
rois, argmax_y, argmax_x = ctx.saved_tensors
grad_input = grad_output.new_zeros(ctx.input_shape)
# complex head architecture may cause grad_output uncontiguous.
grad_output = grad_output.contiguous()
ext_module.roi_align_backward(
grad_output,
rois,
argmax_y,
argmax_x,
grad_input,
aligned_height=ctx.output_size[0],
aligned_width=ctx.output_size[1],
spatial_scale=ctx.spatial_scale,
sampling_ratio=ctx.sampling_ratio,
pool_mode=ctx.pool_mode,
aligned=ctx.aligned)
return grad_input, None, None, None, None, None, None
roi_align = RoIAlignFunction.apply
class RoIAlign(nn.Module):
"""RoI align pooling layer.
Args:
output_size (tuple): h, w
spatial_scale (float): scale the input boxes by this number
sampling_ratio (int): number of inputs samples to take for each
output sample. 0 to take samples densely for current models.
pool_mode (str, 'avg' or 'max'): pooling mode in each bin.
aligned (bool): if False, use the legacy implementation in
MMDetection. If True, align the results more perfectly.
use_torchvision (bool): whether to use roi_align from torchvision.
Note:
The implementation of RoIAlign when aligned=True is modified from
https://github.com/facebookresearch/detectron2/
The meaning of aligned=True:
Given a continuous coordinate c, its two neighboring pixel
indices (in our pixel model) are computed by floor(c - 0.5) and
ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete
indices [0] and [1] (which are sampled from the underlying signal
at continuous coordinates 0.5 and 1.5). But the original roi_align
(aligned=False) does not subtract the 0.5 when computing
neighboring pixel indices and therefore it uses pixels with a
slightly incorrect alignment (relative to our pixel model) when
performing bilinear interpolation.
With `aligned=True`,
we first appropriately scale the ROI and then shift it by -0.5
prior to calling roi_align. This produces the correct neighbors;
The difference does not make a difference to the model's
performance if ROIAlign is used together with conv layers.
"""
@deprecated_api_warning(
{
'out_size': 'output_size',
'sample_num': 'sampling_ratio'
},
cls_name='RoIAlign')
def __init__(self,
output_size,
spatial_scale=1.0,
sampling_ratio=0,
pool_mode='avg',
aligned=True,
use_torchvision=False):
super(RoIAlign, self).__init__()
self.output_size = _pair(output_size)
self.spatial_scale = float(spatial_scale)
self.sampling_ratio = int(sampling_ratio)
self.pool_mode = pool_mode
self.aligned = aligned
self.use_torchvision = use_torchvision
def forward(self, input, rois):
"""
Args:
input: NCHW images
rois: Bx5 boxes. First column is the index into N.\
The other 4 columns are xyxy.
"""
if self.use_torchvision:
from torchvision.ops import roi_align as tv_roi_align
if 'aligned' in tv_roi_align.__code__.co_varnames:
return tv_roi_align(input, rois, self.output_size,
self.spatial_scale, self.sampling_ratio,
self.aligned)
else:
if self.aligned:
rois -= rois.new_tensor([0.] +
[0.5 / self.spatial_scale] * 4)
return tv_roi_align(input, rois, self.output_size,
self.spatial_scale, self.sampling_ratio)
else:
return roi_align(input, rois, self.output_size, self.spatial_scale,
self.sampling_ratio, self.pool_mode, self.aligned)
def __repr__(self):
s = self.__class__.__name__
s += f'(output_size={self.output_size}, '
s += f'spatial_scale={self.spatial_scale}, '
s += f'sampling_ratio={self.sampling_ratio}, '
s += f'pool_mode={self.pool_mode}, '
s += f'aligned={self.aligned}, '
s += f'use_torchvision={self.use_torchvision})'
return s