Spaces:
Runtime error
Runtime error
File size: 18,256 Bytes
42d94eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
import os
import time
from pathlib import Path
from loguru import logger
from datetime import datetime
import gradio as gr
import random
import json
from hyvideo.utils.file_utils import save_videos_grid
from hyvideo.config import parse_args
from hyvideo.inference import HunyuanVideoSampler
from hyvideo.constants import NEGATIVE_PROMPT
from mmgp import offload, profile_type
args = parse_args()
force_profile_no = int(args.profile)
verbose_level = int(args.verbose)
transformer_choices=["ckpts/hunyuan-video-t2v-720p/transformers/hunyuan_video_720_bf16.safetensors", "ckpts/hunyuan-video-t2v-720p/transformers/hunyuan_video_720_quanto_int8.safetensors", "ckpts/hunyuan-video-t2v-720p/transformers/fast_hunyuan_video_720_quanto_int8.safetensors"]
text_encoder_choices = ["ckpts/text_encoder/llava-llama-3-8b-v1_1_fp16.safetensors", "ckpts/text_encoder/llava-llama-3-8b-v1_1_quanto_int8.safetensors"]
server_config_filename = "gradio_config.json"
if not Path(server_config_filename).is_file():
server_config = {"attention_mode" : "sdpa",
"transformer_filename": transformer_choices[1],
"text_encoder_filename" : text_encoder_choices[1],
"compile" : "",
"profile" : profile_type.LowRAM_LowVRAM }
with open(server_config_filename, "w", encoding="utf-8") as writer:
writer.write(json.dumps(server_config))
else:
with open(server_config_filename, "r", encoding="utf-8") as reader:
text = reader.read()
server_config = json.loads(text)
transformer_filename = server_config["transformer_filename"]
text_encoder_filename = server_config["text_encoder_filename"]
attention_mode = server_config["attention_mode"]
profile = force_profile_no if force_profile_no >=0 else server_config["profile"]
compile = server_config.get("compile", "")
#transformer_filename = "ckpts/hunyuan-video-t2v-720p/transformers/hunyuan_video_720_bf16.safetensors"
#transformer_filename = "ckpts/hunyuan-video-t2v-720p/transformers/hunyuan_video_720_quanto_int8.safetensors"
#transformer_filename = "ckpts/hunyuan-video-t2v-720p/transformers/fast_hunyuan_video_720_quanto_int8.safetensors"
#text_encoder_filename = "ckpts/text_encoder/llava-llama-3-8b-v1_1_fp16.safetensors"
#text_encoder_filename = "ckpts/text_encoder/llava-llama-3-8b-v1_1_quanto_int8.safetensors"
#attention_mode="sage"
#attention_mode="flash"
def download_models(transformer_filename, text_encoder_filename):
def computeList(filename):
pos = filename.rfind("/")
filename = filename[pos+1:]
if not "quanto" in filename:
return [filename]
pos = filename.rfind(".")
return [filename, filename[:pos] +"_map.json"]
from huggingface_hub import hf_hub_download, snapshot_download
repoId = "DeepBeepMeep/HunyuanVideo"
sourceFolderList = ["text_encoder_2", "text_encoder", "hunyuan-video-t2v-720p/vae", "hunyuan-video-t2v-720p/transformers" ]
fileList = [ [], ["config.json", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json"] + computeList(text_encoder_filename) , [], computeList(transformer_filename) ]
targetRoot = "ckpts/"
for sourceFolder, files in zip(sourceFolderList,fileList ):
if len(files)==0:
if not Path(targetRoot + sourceFolder).exists():
snapshot_download(repo_id=repoId, allow_patterns=sourceFolder +"/*", local_dir= targetRoot)
else:
for onefile in files:
if not os.path.isfile(targetRoot + sourceFolder + "/" + onefile ):
hf_hub_download(repo_id=repoId, filename=onefile, local_dir = targetRoot, subfolder=sourceFolder)
download_models(transformer_filename, text_encoder_filename)
# models_root_path = Path(args.model_base)
# if not models_root_path.exists():
# raise ValueError(f"`models_root` not exists: {models_root_path}")
offload.default_verboseLevel = verbose_level
with open("./ckpts/hunyuan-video-t2v-720p/vae/config.json", "r", encoding="utf-8") as reader:
text = reader.read()
vae_config= json.loads(text)
# reduce time window used by the VAE for temporal splitting (former time windows is too large for 24 GB)
if vae_config["sample_tsize"] == 64:
vae_config["sample_tsize"] = 32
with open("./ckpts/hunyuan-video-t2v-720p/vae/config.json", "w", encoding="utf-8") as writer:
writer.write(json.dumps(vae_config))
args.flow_reverse = True
if profile == 5:
pinToMemory = False
partialPinning = False
else:
pinToMemory = True
import psutil
physical_memory= psutil.virtual_memory().total
partialPinning = physical_memory <= 2**30 * 32
hunyuan_video_sampler = HunyuanVideoSampler.from_pretrained(transformer_filename, text_encoder_filename, attention_mode = attention_mode, pinToMemory = pinToMemory, partialPinning = partialPinning, args=args, device="cpu")
pipe = hunyuan_video_sampler.pipeline
offload.profile(pipe, profile_no= profile, compile = compile, quantizeTransformer = False)
def apply_changes(
transformer_choice,
text_encoder_choice,
attention_choice,
compile_choice,
profile_choice,
):
server_config = {"attention_mode" : attention_choice,
"transformer_filename": transformer_choices[transformer_choice],
"text_encoder_filename" : text_encoder_choices[text_encoder_choice],
"compile" : compile_choice,
"profile" : profile_choice }
with open(server_config_filename, "w", encoding="utf-8") as writer:
writer.write(json.dumps(server_config))
return "<h1>New Config file created. Please restart the Gradio Server</h1>"
from moviepy.editor import ImageSequenceClip
import numpy as np
def save_video(final_frames, output_path, fps=24):
assert final_frames.ndim == 4 and final_frames.shape[3] == 3, f"invalid shape: {final_frames} (need t h w c)"
if final_frames.dtype != np.uint8:
final_frames = (final_frames * 255).astype(np.uint8)
ImageSequenceClip(list(final_frames), fps=fps).write_videofile(output_path, verbose= False, logger = None)
def generate_video(
prompt,
resolution,
video_length,
seed,
num_inference_steps,
guidance_scale,
flow_shift,
embedded_guidance_scale,
tea_cache,
progress=gr.Progress(track_tqdm=True)
):
seed = None if seed == -1 else seed
width, height = resolution.split("x")
width, height = int(width), int(height)
negative_prompt = "" # not applicable in the inference
# TeaCache
trans = hunyuan_video_sampler.pipeline.transformer.__class__
trans.enable_teacache = tea_cache > 0
if trans.enable_teacache:
trans.num_steps = num_inference_steps
trans.cnt = 0
trans.rel_l1_thresh = 0.15 # 0.1 for 1.6x speedup, 0.15 for 2.1x speedup
trans.accumulated_rel_l1_distance = 0
trans.previous_modulated_input = None
trans.previous_residual = None
outputs = hunyuan_video_sampler.predict(
prompt=prompt,
height=height,
width=width,
video_length=(video_length // 4)* 4 + 1 ,
seed=seed,
negative_prompt=negative_prompt,
infer_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_videos_per_prompt=1,
flow_shift=flow_shift,
batch_size=1,
embedded_guidance_scale=embedded_guidance_scale
)
from einops import rearrange
samples = outputs['samples']
sample = samples[0]
video = rearrange(sample.cpu().numpy(), "c t h w -> t h w c")
save_path = os.path.join(os.getcwd(), "gradio_outputs")
os.makedirs(save_path, exist_ok=True)
time_flag = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d-%Hh%Mm%Ss")
file_name = f"{time_flag}_seed{outputs['seeds'][0]}_{outputs['prompts'][0][:100].replace('/','')}.mp4".replace(':',' ').replace('\\',' ')
video_path = os.path.join(os.getcwd(), "gradio_outputs", file_name)
save_video(video, video_path )
print(f"New video saved to Path: "+video_path)
return video_path
def create_demo(model_path, save_path):
with gr.Blocks() as demo:
gr.Markdown("<div align=center><H1>HunyuanVideo<SUP>GP</SUP> by Tencent</H3></div>")
gr.Markdown("*GPU Poor version by **DeepBeepMeep**. Now this great video generator can run smoothly on a 24 GB rig.*")
gr.Markdown("Please be aware of these limits with profiles 2 and 4 if you have 24 GB of VRAM (RTX 3090 / RTX 4090):")
gr.Markdown("- max 192 frames for 848 x 480 ")
gr.Markdown("- max 86 frames for 1280 x 720")
gr.Markdown("In the worst case, one step should not take more than 2 minutes. If it the case you may be running out of RAM / VRAM. Try to generate fewer images / lower res / a less demanding profile.")
gr.Markdown("If you have a Linux / WSL system you may turn on compilation (see below) and will be able to generate an extra 30°% frames")
with gr.Accordion("Video Engine Configuration", open = False):
gr.Markdown("For the changes to be effective you will need to restart the gradio_server")
with gr.Column():
index = transformer_choices.index(transformer_filename)
index = 0 if index ==0 else index
transformer_choice = gr.Dropdown(
choices=[
("Hunyuan Video 16 bits - the default engine in its original glory, offers a slightly better image quality but slower and requires more RAM", 0),
("Hunyuan Video quantized to 8 bits (recommended) - the default engine but quantized", 1),
("Fast Hunyuan Video quantized to 8 bits - requires less than 10 steps but worse quality", 2),
],
value= index,
label="Transformer"
)
index = text_encoder_choices.index(text_encoder_filename)
index = 0 if index ==0 else index
gr.Markdown("Note that even if you choose a 16 bits Llava model below, depending on the profile it may be automatically quantized to 8 bits on the fly")
text_encoder_choice = gr.Dropdown(
choices=[
("Llava Llama 1.1 16 bits - unquantized text encoder, better quality uses more RAM", 0),
("Llava Llama 1.1 quantized to 8 bits - quantized text encoder, worse quality but uses less RAM", 1),
],
value= index,
label="Text Encoder"
)
attention_choice = gr.Dropdown(
choices=[
("Scale Dot Product Attention: default", "sdpa"),
("Flash: good quality - requires additional install (usually complex to set up on Windows without WSL)", "flash"),
("Sage: 30% faster but worse quality - requires additional install (usually complex to set up on Windows without WSL)", "sage"),
],
value= attention_mode,
label="Attention Type"
)
gr.Markdown("Beware: restarting the server or changing a resolution or video duration will trigger a recompilation that may last a few minutes")
compile_choice = gr.Dropdown(
choices=[
("ON: works only on Linux / WSL", "transformer"),
("OFF: no other choice if you have Windows without using WSL", "" ),
],
value= compile,
label="Compile Transformer (up to 50% faster and 30% more frames but requires Linux / WSL and Flash or Sage attention)"
)
profile_choice = gr.Dropdown(
choices=[
("HighRAM_HighVRAM, profile 1: at least 48 GB of RAM and 24 GB of VRAM, the fastest for shorter videos a RTX 3090 / RTX 4090", 1),
("HighRAM_LowVRAM, profile 2 (Recommended): at least 48 GB of RAM and 12 GB of VRAM, the most versatile profile with high RAM, better suited for RTX 3070/3080/4070/4080 or for RTX 3090 / RTX 4090 with large pictures batches or long videos", 2),
("LowRAM_HighVRAM, profile 3: at least 32 GB of RAM and 24 GB of VRAM, adapted for RTX 3090 / RTX 4090 with limited RAM for good speed short video",3),
("LowRAM_LowVRAM, profile 4 (Default): at least 32 GB of RAM and 12 GB of VRAM, if you have little VRAM or want to generate longer videos",4),
("VerylowRAM_LowVRAM, profile 5: (Fail safe): at least 16 GB of RAM and 10 GB of VRAM, if you don't have much it won't be fast but maybe it will work",5)
],
value= profile,
label="Profile"
)
msg = gr.Markdown()
apply_btn = gr.Button("Apply Changes")
apply_btn.click(
fn=apply_changes,
inputs=[
transformer_choice,
text_encoder_choice,
attention_choice,
compile_choice,
profile_choice,
],
outputs=msg
)
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="A large orange octopus is seen resting on the bottom of the ocean floor, blending in with the sandy and rocky terrain. Its tentacles are spread out around its body, and its eyes are closed. The octopus is unaware of a king crab that is crawling towards it from behind a rock, its claws raised and ready to attack. The crab is brown and spiny, with long legs and antennae. The scene is captured from a wide angle, showing the vastness and depth of the ocean. The water is clear and blue, with rays of sunlight filtering through. The shot is sharp and crisp, with a high dynamic range. The octopus and the crab are in focus, while the background is slightly blurred, creating a depth of field effect.")
with gr.Row():
resolution = gr.Dropdown(
choices=[
# 720p
("1280x720 (16:9, 720p)", "1280x720"),
("720x1280 (9:16, 720p)", "720x1280"),
("1104x832 (4:3, 720p)", "1104x832"),
("832x1104 (3:4, 720p)", "832x1104"),
("960x960 (1:1, 720p)", "960x960"),
# 540p
("960x544 (16:9, 540p)", "960x544"),
("848x480 (16:9, 540p)", "848x480"),
("544x960 (9:16, 540p)", "544x960"),
("832x624 (4:3, 540p)", "832x624"),
("624x832 (3:4, 540p)", "624x832"),
("720x720 (1:1, 540p)", "720x720"),
],
value="848x480",
label="Resolution"
)
video_length = gr.Slider(5, 193, value=97, step=4, label="Number of frames (24 = 1s)")
# video_length = gr.Dropdown(
# label="Video Length",
# choices=[
# ("1.5s(41f)", 41),
# ("2s(65f)", 65),
# ("4s(97f)", 97),
# ("5s(129f)", 129),
# ],
# value=97,
# )
num_inference_steps = gr.Slider(1, 100, value=50, step=1, label="Number of Inference Steps")
show_advanced = gr.Checkbox(label="Show Advanced Options", value=False)
with gr.Row(visible=False) as advanced_row:
with gr.Column():
seed = gr.Number(value=-1, label="Seed (-1 for random)")
guidance_scale = gr.Slider(1.0, 20.0, value=1.0, step=0.5, label="Guidance Scale")
flow_shift = gr.Slider(0.0, 25.0, value=7.0, step=0.1, label="Flow Shift")
embedded_guidance_scale = gr.Slider(1.0, 20.0, value=6.0, step=0.5, label="Embedded Guidance Scale")
with gr.Row():
tea_cache_setting = gr.Dropdown(
choices=[
("Disabled", 0),
("Fast (x1.6 speed up)", 0.1),
("Faster (x2.1 speed up)", 0.15),
],
value=0,
label="Tea Cache acceleration (the faster the acceleration the higher the degradation of the quality of the video)"
)
show_advanced.change(fn=lambda x: gr.Row(visible=x), inputs=[show_advanced], outputs=[advanced_row])
generate_btn = gr.Button("Generate")
with gr.Column():
output = gr.Video(label="Generated Video")
generate_btn.click(
fn=generate_video,
inputs=[
prompt,
resolution,
video_length,
seed,
num_inference_steps,
guidance_scale,
flow_shift,
embedded_guidance_scale,
tea_cache_setting
],
outputs=output
)
return demo
if __name__ == "__main__":
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
server_name = os.getenv("SERVER_NAME", "0.0.0.0")
server_port = int(os.getenv("SERVER_PORT", "7860"))
demo = create_demo(args.model_base, args.save_path)
demo.launch(server_name=server_name, server_port=server_port) |