import os import time from pathlib import Path from loguru import logger from datetime import datetime import gradio as gr import random import json from hyvideo.utils.file_utils import save_videos_grid from hyvideo.config import parse_args from hyvideo.inference import HunyuanVideoSampler from hyvideo.constants import NEGATIVE_PROMPT from mmgp import offload, profile_type args = parse_args() force_profile_no = int(args.profile) verbose_level = int(args.verbose) transformer_choices=["ckpts/hunyuan-video-t2v-720p/transformers/hunyuan_video_720_bf16.safetensors", "ckpts/hunyuan-video-t2v-720p/transformers/hunyuan_video_720_quanto_int8.safetensors", "ckpts/hunyuan-video-t2v-720p/transformers/fast_hunyuan_video_720_quanto_int8.safetensors"] text_encoder_choices = ["ckpts/text_encoder/llava-llama-3-8b-v1_1_fp16.safetensors", "ckpts/text_encoder/llava-llama-3-8b-v1_1_quanto_int8.safetensors"] server_config_filename = "gradio_config.json" if not Path(server_config_filename).is_file(): server_config = {"attention_mode" : "sdpa", "transformer_filename": transformer_choices[1], "text_encoder_filename" : text_encoder_choices[1], "compile" : "", "profile" : profile_type.LowRAM_LowVRAM } with open(server_config_filename, "w", encoding="utf-8") as writer: writer.write(json.dumps(server_config)) else: with open(server_config_filename, "r", encoding="utf-8") as reader: text = reader.read() server_config = json.loads(text) transformer_filename = server_config["transformer_filename"] text_encoder_filename = server_config["text_encoder_filename"] attention_mode = server_config["attention_mode"] profile = force_profile_no if force_profile_no >=0 else server_config["profile"] compile = server_config.get("compile", "") #transformer_filename = "ckpts/hunyuan-video-t2v-720p/transformers/hunyuan_video_720_bf16.safetensors" #transformer_filename = "ckpts/hunyuan-video-t2v-720p/transformers/hunyuan_video_720_quanto_int8.safetensors" #transformer_filename = "ckpts/hunyuan-video-t2v-720p/transformers/fast_hunyuan_video_720_quanto_int8.safetensors" #text_encoder_filename = "ckpts/text_encoder/llava-llama-3-8b-v1_1_fp16.safetensors" #text_encoder_filename = "ckpts/text_encoder/llava-llama-3-8b-v1_1_quanto_int8.safetensors" #attention_mode="sage" #attention_mode="flash" def download_models(transformer_filename, text_encoder_filename): def computeList(filename): pos = filename.rfind("/") filename = filename[pos+1:] if not "quanto" in filename: return [filename] pos = filename.rfind(".") return [filename, filename[:pos] +"_map.json"] from huggingface_hub import hf_hub_download, snapshot_download repoId = "DeepBeepMeep/HunyuanVideo" sourceFolderList = ["text_encoder_2", "text_encoder", "hunyuan-video-t2v-720p/vae", "hunyuan-video-t2v-720p/transformers" ] fileList = [ [], ["config.json", "special_tokens_map.json", "tokenizer.json", "tokenizer_config.json"] + computeList(text_encoder_filename) , [], computeList(transformer_filename) ] targetRoot = "ckpts/" for sourceFolder, files in zip(sourceFolderList,fileList ): if len(files)==0: if not Path(targetRoot + sourceFolder).exists(): snapshot_download(repo_id=repoId, allow_patterns=sourceFolder +"/*", local_dir= targetRoot) else: for onefile in files: if not os.path.isfile(targetRoot + sourceFolder + "/" + onefile ): hf_hub_download(repo_id=repoId, filename=onefile, local_dir = targetRoot, subfolder=sourceFolder) download_models(transformer_filename, text_encoder_filename) # models_root_path = Path(args.model_base) # if not models_root_path.exists(): # raise ValueError(f"`models_root` not exists: {models_root_path}") offload.default_verboseLevel = verbose_level with open("./ckpts/hunyuan-video-t2v-720p/vae/config.json", "r", encoding="utf-8") as reader: text = reader.read() vae_config= json.loads(text) # reduce time window used by the VAE for temporal splitting (former time windows is too large for 24 GB) if vae_config["sample_tsize"] == 64: vae_config["sample_tsize"] = 32 with open("./ckpts/hunyuan-video-t2v-720p/vae/config.json", "w", encoding="utf-8") as writer: writer.write(json.dumps(vae_config)) args.flow_reverse = True if profile == 5: pinToMemory = False partialPinning = False else: pinToMemory = True import psutil physical_memory= psutil.virtual_memory().total partialPinning = physical_memory <= 2**30 * 32 hunyuan_video_sampler = HunyuanVideoSampler.from_pretrained(transformer_filename, text_encoder_filename, attention_mode = attention_mode, pinToMemory = pinToMemory, partialPinning = partialPinning, args=args, device="cpu") pipe = hunyuan_video_sampler.pipeline offload.profile(pipe, profile_no= profile, compile = compile, quantizeTransformer = False) def apply_changes( transformer_choice, text_encoder_choice, attention_choice, compile_choice, profile_choice, ): server_config = {"attention_mode" : attention_choice, "transformer_filename": transformer_choices[transformer_choice], "text_encoder_filename" : text_encoder_choices[text_encoder_choice], "compile" : compile_choice, "profile" : profile_choice } with open(server_config_filename, "w", encoding="utf-8") as writer: writer.write(json.dumps(server_config)) return "

New Config file created. Please restart the Gradio Server

" from moviepy.editor import ImageSequenceClip import numpy as np def save_video(final_frames, output_path, fps=24): assert final_frames.ndim == 4 and final_frames.shape[3] == 3, f"invalid shape: {final_frames} (need t h w c)" if final_frames.dtype != np.uint8: final_frames = (final_frames * 255).astype(np.uint8) ImageSequenceClip(list(final_frames), fps=fps).write_videofile(output_path, verbose= False, logger = None) def generate_video( prompt, resolution, video_length, seed, num_inference_steps, guidance_scale, flow_shift, embedded_guidance_scale, tea_cache, progress=gr.Progress(track_tqdm=True) ): seed = None if seed == -1 else seed width, height = resolution.split("x") width, height = int(width), int(height) negative_prompt = "" # not applicable in the inference # TeaCache trans = hunyuan_video_sampler.pipeline.transformer.__class__ trans.enable_teacache = tea_cache > 0 if trans.enable_teacache: trans.num_steps = num_inference_steps trans.cnt = 0 trans.rel_l1_thresh = 0.15 # 0.1 for 1.6x speedup, 0.15 for 2.1x speedup trans.accumulated_rel_l1_distance = 0 trans.previous_modulated_input = None trans.previous_residual = None outputs = hunyuan_video_sampler.predict( prompt=prompt, height=height, width=width, video_length=(video_length // 4)* 4 + 1 , seed=seed, negative_prompt=negative_prompt, infer_steps=num_inference_steps, guidance_scale=guidance_scale, num_videos_per_prompt=1, flow_shift=flow_shift, batch_size=1, embedded_guidance_scale=embedded_guidance_scale ) from einops import rearrange samples = outputs['samples'] sample = samples[0] video = rearrange(sample.cpu().numpy(), "c t h w -> t h w c") save_path = os.path.join(os.getcwd(), "gradio_outputs") os.makedirs(save_path, exist_ok=True) time_flag = datetime.fromtimestamp(time.time()).strftime("%Y-%m-%d-%Hh%Mm%Ss") file_name = f"{time_flag}_seed{outputs['seeds'][0]}_{outputs['prompts'][0][:100].replace('/','')}.mp4".replace(':',' ').replace('\\',' ') video_path = os.path.join(os.getcwd(), "gradio_outputs", file_name) save_video(video, video_path ) print(f"New video saved to Path: "+video_path) return video_path def create_demo(model_path, save_path): with gr.Blocks() as demo: gr.Markdown("

HunyuanVideoGP by Tencent

") gr.Markdown("*GPU Poor version by **DeepBeepMeep**. Now this great video generator can run smoothly on a 24 GB rig.*") gr.Markdown("Please be aware of these limits with profiles 2 and 4 if you have 24 GB of VRAM (RTX 3090 / RTX 4090):") gr.Markdown("- max 192 frames for 848 x 480 ") gr.Markdown("- max 86 frames for 1280 x 720") gr.Markdown("In the worst case, one step should not take more than 2 minutes. If it the case you may be running out of RAM / VRAM. Try to generate fewer images / lower res / a less demanding profile.") gr.Markdown("If you have a Linux / WSL system you may turn on compilation (see below) and will be able to generate an extra 30°% frames") with gr.Accordion("Video Engine Configuration", open = False): gr.Markdown("For the changes to be effective you will need to restart the gradio_server") with gr.Column(): index = transformer_choices.index(transformer_filename) index = 0 if index ==0 else index transformer_choice = gr.Dropdown( choices=[ ("Hunyuan Video 16 bits - the default engine in its original glory, offers a slightly better image quality but slower and requires more RAM", 0), ("Hunyuan Video quantized to 8 bits (recommended) - the default engine but quantized", 1), ("Fast Hunyuan Video quantized to 8 bits - requires less than 10 steps but worse quality", 2), ], value= index, label="Transformer" ) index = text_encoder_choices.index(text_encoder_filename) index = 0 if index ==0 else index gr.Markdown("Note that even if you choose a 16 bits Llava model below, depending on the profile it may be automatically quantized to 8 bits on the fly") text_encoder_choice = gr.Dropdown( choices=[ ("Llava Llama 1.1 16 bits - unquantized text encoder, better quality uses more RAM", 0), ("Llava Llama 1.1 quantized to 8 bits - quantized text encoder, worse quality but uses less RAM", 1), ], value= index, label="Text Encoder" ) attention_choice = gr.Dropdown( choices=[ ("Scale Dot Product Attention: default", "sdpa"), ("Flash: good quality - requires additional install (usually complex to set up on Windows without WSL)", "flash"), ("Sage: 30% faster but worse quality - requires additional install (usually complex to set up on Windows without WSL)", "sage"), ], value= attention_mode, label="Attention Type" ) gr.Markdown("Beware: restarting the server or changing a resolution or video duration will trigger a recompilation that may last a few minutes") compile_choice = gr.Dropdown( choices=[ ("ON: works only on Linux / WSL", "transformer"), ("OFF: no other choice if you have Windows without using WSL", "" ), ], value= compile, label="Compile Transformer (up to 50% faster and 30% more frames but requires Linux / WSL and Flash or Sage attention)" ) profile_choice = gr.Dropdown( choices=[ ("HighRAM_HighVRAM, profile 1: at least 48 GB of RAM and 24 GB of VRAM, the fastest for shorter videos a RTX 3090 / RTX 4090", 1), ("HighRAM_LowVRAM, profile 2 (Recommended): at least 48 GB of RAM and 12 GB of VRAM, the most versatile profile with high RAM, better suited for RTX 3070/3080/4070/4080 or for RTX 3090 / RTX 4090 with large pictures batches or long videos", 2), ("LowRAM_HighVRAM, profile 3: at least 32 GB of RAM and 24 GB of VRAM, adapted for RTX 3090 / RTX 4090 with limited RAM for good speed short video",3), ("LowRAM_LowVRAM, profile 4 (Default): at least 32 GB of RAM and 12 GB of VRAM, if you have little VRAM or want to generate longer videos",4), ("VerylowRAM_LowVRAM, profile 5: (Fail safe): at least 16 GB of RAM and 10 GB of VRAM, if you don't have much it won't be fast but maybe it will work",5) ], value= profile, label="Profile" ) msg = gr.Markdown() apply_btn = gr.Button("Apply Changes") apply_btn.click( fn=apply_changes, inputs=[ transformer_choice, text_encoder_choice, attention_choice, compile_choice, profile_choice, ], outputs=msg ) with gr.Row(): with gr.Column(): prompt = gr.Textbox(label="Prompt", value="A large orange octopus is seen resting on the bottom of the ocean floor, blending in with the sandy and rocky terrain. Its tentacles are spread out around its body, and its eyes are closed. The octopus is unaware of a king crab that is crawling towards it from behind a rock, its claws raised and ready to attack. The crab is brown and spiny, with long legs and antennae. The scene is captured from a wide angle, showing the vastness and depth of the ocean. The water is clear and blue, with rays of sunlight filtering through. The shot is sharp and crisp, with a high dynamic range. The octopus and the crab are in focus, while the background is slightly blurred, creating a depth of field effect.") with gr.Row(): resolution = gr.Dropdown( choices=[ # 720p ("1280x720 (16:9, 720p)", "1280x720"), ("720x1280 (9:16, 720p)", "720x1280"), ("1104x832 (4:3, 720p)", "1104x832"), ("832x1104 (3:4, 720p)", "832x1104"), ("960x960 (1:1, 720p)", "960x960"), # 540p ("960x544 (16:9, 540p)", "960x544"), ("848x480 (16:9, 540p)", "848x480"), ("544x960 (9:16, 540p)", "544x960"), ("832x624 (4:3, 540p)", "832x624"), ("624x832 (3:4, 540p)", "624x832"), ("720x720 (1:1, 540p)", "720x720"), ], value="848x480", label="Resolution" ) video_length = gr.Slider(5, 193, value=97, step=4, label="Number of frames (24 = 1s)") # video_length = gr.Dropdown( # label="Video Length", # choices=[ # ("1.5s(41f)", 41), # ("2s(65f)", 65), # ("4s(97f)", 97), # ("5s(129f)", 129), # ], # value=97, # ) num_inference_steps = gr.Slider(1, 100, value=50, step=1, label="Number of Inference Steps") show_advanced = gr.Checkbox(label="Show Advanced Options", value=False) with gr.Row(visible=False) as advanced_row: with gr.Column(): seed = gr.Number(value=-1, label="Seed (-1 for random)") guidance_scale = gr.Slider(1.0, 20.0, value=1.0, step=0.5, label="Guidance Scale") flow_shift = gr.Slider(0.0, 25.0, value=7.0, step=0.1, label="Flow Shift") embedded_guidance_scale = gr.Slider(1.0, 20.0, value=6.0, step=0.5, label="Embedded Guidance Scale") with gr.Row(): tea_cache_setting = gr.Dropdown( choices=[ ("Disabled", 0), ("Fast (x1.6 speed up)", 0.1), ("Faster (x2.1 speed up)", 0.15), ], value=0, label="Tea Cache acceleration (the faster the acceleration the higher the degradation of the quality of the video)" ) show_advanced.change(fn=lambda x: gr.Row(visible=x), inputs=[show_advanced], outputs=[advanced_row]) generate_btn = gr.Button("Generate") with gr.Column(): output = gr.Video(label="Generated Video") generate_btn.click( fn=generate_video, inputs=[ prompt, resolution, video_length, seed, num_inference_steps, guidance_scale, flow_shift, embedded_guidance_scale, tea_cache_setting ], outputs=output ) return demo if __name__ == "__main__": os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" server_name = os.getenv("SERVER_NAME", "0.0.0.0") server_port = int(os.getenv("SERVER_PORT", "7860")) demo = create_demo(args.model_base, args.save_path) demo.launch(server_name=server_name, server_port=server_port)