Spaces:
Sleeping
Sleeping
Rohankumar31
commited on
Commit
·
249a203
1
Parent(s):
3b0bcc4
Upload 4 files
Browse files- Book_updated.csv +100 -0
- main_2.py +18 -0
- model_2.py +26 -0
- stream_2.py +32 -0
Book_updated.csv
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Prakruti type,Body Frame,Body weight,Skin,Hair,Teeth,Eyes,Nails,Tongue,Food Habits,Thirst,Bowl,Physical Activities,Tolerance for Seasonal Weather,Communication,Memory,Emotional Temperament,Pulse,Body Temperature
|
2 |
+
Vata,Thin,Low,Dry,Dry,Big,Small,Brittle,Cracked,Frequent,Variable,Dry,Very Active,Cold Intolerant,Less Vocal,Slow,Aggressive,Moderate,Moderate
|
3 |
+
Pitha,Broad,Over Weight,Thick,Soft,Big,Thick,Soft,Red,Excessive,Excessive,Soft,Moderate,Heat Intolerant,Sharp,Moderate,Aggressive,Moderate,High
|
4 |
+
Vata,Broad,Over Weight,Thick,Soft,Strong,Small,Brittle,Cracked,Frequent,Variable,Dry,Very Active,Cold Intolerant,Talkative,Quick,Fearful,Feeble,Moderate
|
5 |
+
Tridosha,Broad,Over Weight,Thick,Strong,Strong,Big,Soft,Red,Excessive,Excessive,Soft,Moderate,Cold Intolerant,Talkative,Quick,Fearful,Feeble,Moderate
|
6 |
+
Pitha,Medium,Moderate,Soft,Soft,Strong,Thick,Soft,Red,Excessive,Excessive,Soft,Moderate,Heat Intolerant,Sharp,Moderate,Aggressive,Moderate,Low
|
7 |
+
Vata,Thin,Low,Dry,Dry,Strong,Thick,Thick,Cracked,Frequent,Variable,Dry,Very Active,Cold Intolerant,Talkative,Quick,Fearful,Feeble,Moderate
|
8 |
+
Vata-Pitha,Thin,Low,Dry,Dry,Big,Small,Brittle,Cracked,Stable,Excessive,Soft,Moderate,Heat Intolerant,Sharp,Moderate,Aggressive,Moderate,High
|
9 |
+
Vata-Kapha,Broad,Over Weight,Thick,Strong,Big,Small,Brittle,Cracked,Excessive,Scanty,Oily,Lethargic,Heat and Cold Intolerant,Less Vocal,Quick,Fearful,Feeble,Moderate
|
10 |
+
Pitha-Kapha,Medium,Moderate,Soft,Soft,Strong,Thick,Soft,Red,Excessive,Excessive,Oily,Lethargic,Heat and Cold Intolerant,Less Vocal,Slow,Calm,Slow,Low
|
11 |
+
Tridosha,Broad,Moderate,Dry,Strong,Strong,Small,Thick,Red,Frequent,Scanty,Soft,Very Active,Heat and Cold Intolerant,Sharp,Quick,Calm,Moderate,Moderate
|
12 |
+
Vata-Kapha,Thin,Low,Dry,Strong,Strong,Big,Thick,White,Stable,Scanty,Oily,Lethargic,Heat Intolerant,Talkative,Quick,Fearful,Feeble,Moderate
|
13 |
+
Vata,Thin,Low,Dry,Dry,Big,Small,Brittle,Cracked,Frequent,Variable,Dry,Very Active,Cold Intolerant,Talkative,Quick,Calm,Moderate,High
|
14 |
+
Kapha,Broad,Over Weight,Thick,Strong,Strong,Big,Thick,White,Stable,Scanty,Oily,Lethargic,Heat and Cold Intolerant,Less Vocal,Slow,Calm,Slow,Low
|
15 |
+
Pitha,Broad,Over Weight,Thick,Strong,Strong,Thick,Soft,Red,Excessive,Excessive,Soft,Moderate,Heat Intolerant,Sharp,Moderate,Aggressive,Moderate,High
|
16 |
+
Vata-Pitha,Medium,Moderate,Soft,Soft,Strong,Thick,Soft,Red,Excessive,Variable,Dry,Very Active,Cold Intolerant,Talkative,Quick,Fearful,Feeble,Moderate
|
17 |
+
Pitha-Kapha,Medium,Moderate,Thick,Strong,Strong,Small,Soft,Red,Excessive,Excessive,Soft,Moderate,Heat Intolerant,Less Vocal,Slow,Calm,Slow,Low
|
18 |
+
Tridosha,Broad,Over Weight,Soft,Soft,Big,Small,Thick,White,Excessive,Excessive,Dry,Very Active,Heat and Cold Intolerant,Less Vocal,Moderate,Aggressive,Feeble,Moderate
|
19 |
+
Vata-Kapha,Broad,Over Weight,Thick,Strong,Strong,Big,Thick,White,Stable,Variable,Dry,Very Active,Cold Intolerant,Talkative,Quick,Fearful,Feeble,Moderate
|
20 |
+
Pitha,Medium,Moderate,Soft,Soft,Strong,Thick,Soft,Red,Excessive,Excessive,Soft,Very Active,Heat and Cold Intolerant,Less Vocal,Moderate,Aggressive,Moderate,High
|
21 |
+
Kapha,Broad,Over Weight,Thick,Strong,Strong,Big,Thick,White,Stable,Scanty,Oily,Lethargic,Cold Intolerant,Sharp,Moderate,Calm,Slow,Low
|
22 |
+
Vata,Thin,Moderate,Soft,Strong,Big,Small,Brittle,Red,Frequent,Variable,Dry,Very Active,Cold Intolerant,Talkative,Slow,Fearful,Slow,Moderate
|
23 |
+
Pitha,Broad,Over Weight,Soft,Soft,Strong,Big,Soft,Red,Excessive,Excessive,Soft,Moderate,Heat Intolerant,Sharp,Moderate,Calm,Slow,High
|
24 |
+
Kapha,Thin,Low,Thick,Strong,Strong,Big,Thick,White,Stable,Scanty,Oily,Very Active,Cold Intolerant,Less Vocal,Quick,Calm,Slow,Low
|
25 |
+
Vata-Pitha,Medium,Moderate,Soft,Soft,Big,Small,Brittle,Cracked,Excessive,Variable,Dry,Moderate,Cold Intolerant,Talkative,Quick,Aggressive,Moderate,High
|
26 |
+
Vata-Kapha,Broad,Over Weight,Dry,Dry,Strong,Big,Brittle,Cracked,Excessive,Variable,Oily,Lethargic,Heat and Cold Intolerant,Less Vocal,Quick,Fearful,Slow,Moderate
|
27 |
+
Pitha-Kapha,Medium,Moderate,Soft,Strong,Strong,Thick,Soft,Cracked,Stable,Scanty,Soft,Lethargic,Heat Intolerant,Less Vocal,Moderate,Fearful,Slow,Low
|
28 |
+
Tridosha,Thin,Moderate,Thick,Dry,Strong,Big,Brittle,Red,Stable,Variable,Soft,Lethargic,Cold Intolerant,Sharp,Slow,Fearful,Moderate,High
|
29 |
+
Vata,Thin,Over Weight,Thick,Dry,Big,Small,Soft,White,Frequent,Variable,Dry,Moderate,Cold Intolerant,Talkative,Quick,Fearful,Feeble,Moderate
|
30 |
+
Pitha,Thin,Moderate,Soft,Soft,Strong,Thick,Thick,White,Stable,Excessive,Soft,Moderate,Heat Intolerant,Sharp,Moderate,Aggressive,Slow,High
|
31 |
+
Kapha,Broad,Over Weight,Soft,Soft,Strong,Big,Soft,White,Stable,Scanty,Oily,Lethargic,Heat Intolerant,Less Vocal,Quick,Calm,Slow,Low
|
32 |
+
Vata-Pitha,Medium,Low,Dry,Soft,Strong,Big,Thick,Cracked,Frequent,Excessive,Dry,Moderate,Cold Intolerant,Less Vocal,Moderate,Fearful,Moderate,High
|
33 |
+
Vata-Kapha,Thin,Over Weight,Thick,Dry,Big,Small,Thick,Cracked,Stable,Scanty,Dry,Lethargic,Cold Intolerant,Less Vocal,Quick,Fearful,Slow,Moderate
|
34 |
+
Pitha-Kapha,Broad,Moderate,Thick,Soft,Strong,Thick,Thick,White,Frequent,Variable,Dry,Lethargic,Heat Intolerant,Sharp,Slow,Calm,Moderate,Low
|
35 |
+
Tridosha,Broad,Moderate,Dry,Strong,Strong,Small,Thick,Red,Frequent,Scanty,Soft,Very Active,Heat and Cold Intolerant,Sharp,Quick,Calm,Moderate,High
|
36 |
+
Vata,Medium,Low,Dry,Soft,Strong,Small,Soft,White,Frequent,Variable,Dry,Moderate,Cold Intolerant,Talkative,Quick,Fearful,Feeble,Moderate
|
37 |
+
Pitha,Medium,Moderate,Thick,Strong,Strong,Thick,Thick,White,Stable,Excessive,Soft,Moderate,Heat Intolerant,Sharp,Moderate,Aggressive,Slow,High
|
38 |
+
Kapha,Broad,Over Weight,Thick,Soft,Big,Big,Soft,White,Stable,Scanty,Oily,Lethargic,Heat Intolerant,Less Vocal,Quick,Calm,Slow,Low
|
39 |
+
Vata-Pitha,Thin,Moderate,Dry,Dry,Big,Big,Thick,Cracked,Frequent,Excessive,Dry,Moderate,Cold Intolerant,Less Vocal,Moderate,Fearful,Moderate,High
|
40 |
+
Vata-Kapha,Thin,Moderate,Dry,Strong,Big,Small,Thick,Cracked,Stable,Scanty,Dry,Lethargic,Cold Intolerant,Less Vocal,Quick,Fearful,Slow,Moderate
|
41 |
+
Pitha-Kapha,Broad,Moderate,Dry,Strong,Strong,Thick,Thick,White,Frequent,Variable,Dry,Lethargic,Heat Intolerant,Sharp,Slow,Calm,Moderate,Low
|
42 |
+
Tridosha,Medium,Over Weight,Dry,Soft,Big,Small,Thick,Red,Frequent,Scanty,Soft,Very Active,Heat and Cold Intolerant,Sharp,Quick,Calm,Moderate,High
|
43 |
+
Vata,Medium,Low,Dry,Soft,Strong,Thick,Brittle,Cracked,Frequent,Variable,Dry,Moderate,Cold Intolerant,Talkative,Quick,Fearful,Feeble,Moderate
|
44 |
+
Pitha,Medium,Moderate,Thick,Strong,Strong,Big,Soft,Red,Excessive,Excessive,Soft,Moderate,Heat Intolerant,Sharp,Moderate,Aggressive,Slow,High
|
45 |
+
Kapha,Broad,Over Weight,Thick,Soft,Big,Thick,Thick,Red,Stable,Scanty,Oily,Lethargic,Heat Intolerant,Less Vocal,Quick,Calm,Slow,Low
|
46 |
+
Vata-Pitha,Thin,Moderate,Dry,Dry,Big,Thick,Soft,Red,Frequent,Excessive,Dry,Moderate,Cold Intolerant,Less Vocal,Moderate,Fearful,Moderate,High
|
47 |
+
Vata-Kapha,Thin,Moderate,Dry,Strong,Big,Big,Brittle,White,Stable,Scanty,Dry,Lethargic,Cold Intolerant,Less Vocal,Quick,Fearful,Slow,Moderate
|
48 |
+
Pitha-Kapha,Broad,Moderate,Dry,Strong,Strong,Big,Soft,Red,Frequent,Variable,Dry,Lethargic,Heat Intolerant,Sharp,Slow,Calm,Moderate,Low
|
49 |
+
Tridosha,Medium,Over Weight,Dry,Soft,Big,Big,Soft,White,Frequent,Scanty,Soft,Very Active,Heat and Cold Intolerant,Sharp,Quick,Calm,Moderate,High
|
50 |
+
Vata,Thin,Moderate,Soft,Dry,Strong,Thick,Brittle,Cracked,Frequent,Variable,Dry,Moderate,Cold Intolerant,Talkative,Quick,Fearful,Feeble,Moderate
|
51 |
+
Pitha,Broad,Moderate,Soft,Strong,Strong,Big,Soft,Red,Excessive,Excessive,Soft,Moderate,Heat Intolerant,Sharp,Moderate,Aggressive,Slow,High
|
52 |
+
Kapha,Broad,Over Weight,Thick,Soft,Big,Thick,Thick,Red,Excessive,Variable,Oily,Moderate,Heat Intolerant,Less Vocal,Quick,Calm,Slow,Low
|
53 |
+
Vata-Pitha,Thin,Moderate,Dry,Dry,Big,Thick,Soft,Red,Excessive,Variable,Soft,Moderate,Cold Intolerant,Less Vocal,Moderate,Fearful,Moderate,High
|
54 |
+
Vata-Kapha,Thin,Moderate,Dry,Strong,Big,Big,Brittle,White,Frequent,Variable,Oily,Lethargic,Cold Intolerant,Less Vocal,Quick,Fearful,Slow,Moderate
|
55 |
+
Pitha-Kapha,Broad,Moderate,Dry,Strong,Strong,Big,Soft,Red,Excessive,Variable,Oily,Lethargic,Heat Intolerant,Sharp,Slow,Calm,Moderate,Low
|
56 |
+
Tridosha,Medium,Over Weight,Dry,Soft,Big,Big,Soft,White,Stable,Variable,Dry,Very Active,Heat and Cold Intolerant,Sharp,Quick,Calm,Moderate,High
|
57 |
+
Vata,Thin,Moderate,Soft,Dry,Strong,Thick,Brittle,Cracked,Frequent,Variable,Dry,Very Active,Heat Intolerant,Sharp,Quick,Fearful,Feeble,Moderate
|
58 |
+
Pitha,Broad,Moderate,Soft,Strong,Strong,Big,Soft,Red,Excessive,Excessive,Soft,Lethargic,Heat Intolerant,Sharp,Moderate,Aggressive,Slow,High
|
59 |
+
Kapha,Broad,Over Weight,Thick,Soft,Big,Thick,Thick,Red,Excessive,Variable,Oily,Lethargic,Heat and Cold Intolerant,Less Vocal,Quick,Calm,Slow,Low
|
60 |
+
Vata-Pitha,Thin,Moderate,Dry,Dry,Big,Thick,Soft,Red,Excessive,Variable,Soft,Very Active,Heat and Cold Intolerant,Talkative,Moderate,Fearful,Moderate,High
|
61 |
+
Vata-Kapha,Thin,Moderate,Dry,Strong,Big,Big,Brittle,White,Frequent,Variable,Oily,Very Active,Heat Intolerant,Talkative,Quick,Fearful,Slow,Moderate
|
62 |
+
Pitha-Kapha,Broad,Moderate,Dry,Strong,Strong,Big,Soft,Red,Excessive,Variable,Oily,Moderate,Cold Intolerant,Less Vocal,Slow,Calm,Moderate,Low
|
63 |
+
Tridosha,Medium,Over Weight,Dry,Soft,Big,Big,Soft,White,Stable,Variable,Dry,Lethargic,Cold Intolerant,Less Vocal,Quick,Calm,Moderate,High
|
64 |
+
Vata,Thin,Moderate,Soft,Dry,Strong,Thick,Brittle,Cracked,Frequent,Variable,Dry,Very Active,Heat Intolerant,Talkative,Moderate,Fearful,Feeble,High
|
65 |
+
Pitha,Broad,Moderate,Soft,Strong,Strong,Big,Soft,Red,Excessive,Excessive,Soft,Moderate,Heat Intolerant,Sharp,Moderate,Calm,Moderate,High
|
66 |
+
Kapha,Broad,Over Weight,Thick,Soft,Big,Thick,Thick,Red,Excessive,Variable,Oily,Lethargic,Heat and Cold Intolerant,Less Vocal,Slow,Calm,Feeble,Moderate
|
67 |
+
Vata-Pitha,Thin,Moderate,Dry,Dry,Big,Thick,Soft,Red,Excessive,Variable,Soft,Very Active,Heat and Cold Intolerant,Talkative,Slow,Fearful,Feeble,Low
|
68 |
+
Vata-Kapha,Thin,Moderate,Dry,Strong,Big,Big,Brittle,White,Frequent,Variable,Oily,Very Active,Heat Intolerant,Less Vocal,Moderate,Fearful,Slow,High
|
69 |
+
Pitha-Kapha,Broad,Moderate,Dry,Strong,Strong,Big,Soft,Red,Excessive,Variable,Oily,Moderate,Cold Intolerant,Less Vocal,Quick,Aggressive,Slow,Moderate
|
70 |
+
Tridosha,Medium,Over Weight,Dry,Soft,Big,Big,Soft,White,Stable,Variable,Dry,Lethargic,Cold Intolerant,Sharp,Slow,Aggressive,Feeble,Low
|
71 |
+
Vata,Broad,Moderate,Dry,Dry,Big,Thick,Brittle,Cracked,Frequent,Variable,Dry,Very Active,Heat Intolerant,Talkative,Moderate,Fearful,Feeble,High
|
72 |
+
Pitha,Medium,Moderate,Thick,Strong,Strong,Big,Soft,Red,Excessive,Excessive,Soft,Moderate,Heat Intolerant,Sharp,Moderate,Calm,Moderate,High
|
73 |
+
Kapha,Thin,Over Weight,Dry,Soft,Strong,Thick,Thick,Red,Excessive,Variable,Oily,Lethargic,Heat and Cold Intolerant,Less Vocal,Slow,Calm,Feeble,Moderate
|
74 |
+
Vata-Pitha,Medium,Moderate,Soft,Dry,Strong,Thick,Soft,Red,Excessive,Variable,Soft,Very Active,Heat and Cold Intolerant,Talkative,Slow,Fearful,Feeble,Low
|
75 |
+
Vata-Kapha,Broad,Moderate,Thick,Strong,Strong,Big,Brittle,White,Frequent,Variable,Oily,Very Active,Heat Intolerant,Less Vocal,Moderate,Fearful,Slow,High
|
76 |
+
Pitha-Kapha,Thin,Moderate,Soft,Strong,Strong,Big,Soft,Red,Excessive,Variable,Oily,Moderate,Cold Intolerant,Less Vocal,Quick,Aggressive,Slow,Moderate
|
77 |
+
Tridosha,Thin,Over Weight,Thick,Soft,Big,Big,Soft,White,Stable,Variable,Dry,Lethargic,Cold Intolerant,Sharp,Slow,Aggressive,Feeble,Low
|
78 |
+
Vata,Broad,Low,Dry,Soft,Big,Small,Brittle,Cracked,Frequent,Variable,Dry,Very Active,Heat Intolerant,Talkative,Moderate,Fearful,Feeble,High
|
79 |
+
Pitha,Medium,Moderate,Thick,Soft,Strong,Thick,Soft,Red,Excessive,Excessive,Soft,Moderate,Heat Intolerant,Sharp,Moderate,Calm,Moderate,High
|
80 |
+
Kapha,Thin,Low,Dry,Strong,Strong,Big,Thick,Red,Excessive,Variable,Oily,Lethargic,Heat and Cold Intolerant,Less Vocal,Slow,Calm,Feeble,Moderate
|
81 |
+
Vata-Pitha,Medium,Low,Soft,Soft,Strong,Big,Soft,Red,Excessive,Variable,Soft,Very Active,Heat and Cold Intolerant,Talkative,Slow,Fearful,Feeble,Low
|
82 |
+
Vata-Kapha,Broad,Over Weight,Thick,Dry,Strong,Small,Brittle,White,Frequent,Variable,Oily,Very Active,Heat Intolerant,Less Vocal,Moderate,Fearful,Slow,High
|
83 |
+
Pitha-Kapha,Thin,Over Weight,Soft,Soft,Strong,Thick,Soft,Red,Excessive,Variable,Oily,Moderate,Cold Intolerant,Less Vocal,Quick,Aggressive,Slow,Moderate
|
84 |
+
Tridosha,Thin,Low,Thick,Dry,Big,Thick,Soft,White,Stable,Variable,Dry,Lethargic,Cold Intolerant,Sharp,Slow,Aggressive,Feeble,Low
|
85 |
+
Vata,Broad,Low,Dry,Soft,Big,Small,Brittle,Cracked,Frequent,Variable,Dry,Moderate,Heat Intolerant,Sharp,Moderate,Fearful,Feeble,High
|
86 |
+
Pitha,Medium,Moderate,Thick,Soft,Strong,Thick,Soft,Red,Excessive,Excessive,Soft,Lethargic,Heat Intolerant,Sharp,Moderate,Calm,Moderate,High
|
87 |
+
Kapha,Thin,Low,Dry,Strong,Strong,Big,Thick,Red,Excessive,Variable,Oily,Very Active,Heat and Cold Intolerant,Talkative,Slow,Calm,Feeble,Moderate
|
88 |
+
Vata-Pitha,Medium,Low,Soft,Soft,Strong,Big,Soft,Red,Excessive,Variable,Soft,Moderate,Heat and Cold Intolerant,Sharp,Slow,Aggressive,Feeble,Low
|
89 |
+
Vata-Kapha,Broad,Over Weight,Thick,Dry,Strong,Small,Brittle,White,Frequent,Variable,Oily,Lethargic,Heat Intolerant,Talkative,Moderate,Calm,Slow,High
|
90 |
+
Pitha-Kapha,Thin,Over Weight,Soft,Soft,Strong,Thick,Soft,Red,Excessive,Variable,Oily,Lethargic,Cold Intolerant,Sharp,Quick,Calm,Slow,Moderate
|
91 |
+
Tridosha,Thin,Low,Thick,Dry,Big,Thick,Soft,White,Stable,Variable,Dry,Moderate,Cold Intolerant,Talkative,Slow,Fearful,Feeble,Low
|
92 |
+
Vata,Broad,Low,Dry,Soft,Big,Small,Brittle,Cracked,Frequent,Variable,Dry,Moderate,Heat Intolerant,Sharp,Quick,Fearful,Slow,High
|
93 |
+
Pitha,Medium,Moderate,Thick,Soft,Strong,Thick,Soft,Red,Excessive,Excessive,Soft,Lethargic,Heat Intolerant,Sharp,Moderate,Calm,Feeble,High
|
94 |
+
Kapha,Thin,Low,Dry,Strong,Strong,Big,Thick,Red,Excessive,Variable,Oily,Very Active,Heat and Cold Intolerant,Talkative,Quick,Calm,Slow,Moderate
|
95 |
+
Vata-Pitha,Medium,Low,Soft,Soft,Strong,Big,Soft,Red,Excessive,Variable,Soft,Moderate,Heat and Cold Intolerant,Sharp,Moderate,Aggressive,Slow,Low
|
96 |
+
Vata-Kapha,Broad,Over Weight,Thick,Dry,Strong,Small,Brittle,White,Frequent,Variable,Oily,Lethargic,Heat Intolerant,Talkative,Quick,Calm,Moderate,High
|
97 |
+
Pitha-Kapha,Thin,Over Weight,Soft,Soft,Strong,Thick,Soft,Red,Excessive,Variable,Oily,Lethargic,Cold Intolerant,Sharp,Moderate,Calm,Feeble,Moderate
|
98 |
+
Tridosha,Thin,Low,Thick,Dry,Big,Thick,Soft,White,Stable,Variable,Dry,Moderate,Cold Intolerant,Talkative,Quick,Fearful,Slow,Low
|
99 |
+
Pitha-Kapha,Medium,Over Weight,Soft,Soft,Strong,Thick,Soft,Red,Excessive,Variable,Oily,Lethargic,Cold Intolerant,Sharp,Moderate,Calm,Moderate,Moderate
|
100 |
+
Tridosha,Broad,Low,Thick,Dry,Big,Thick,Soft,White,Stable,Variable,Dry,Moderate,Cold Intolerant,Talkative,Quick,Fearful,Feeble,Low
|
main_2.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import model_2
|
3 |
+
model = model_2.model
|
4 |
+
cols = model_2.target2.columns
|
5 |
+
def encode(encoders, input_data):
|
6 |
+
model_input=[]
|
7 |
+
for i in range(len(input_data)):
|
8 |
+
row=[]
|
9 |
+
for j in range(18):
|
10 |
+
row.extend(encoders[j].transform([input_data.iloc[i][j]]))
|
11 |
+
model_input.append(row)
|
12 |
+
model_input=np.array(model_input)
|
13 |
+
return model_input
|
14 |
+
def input_output(user_input):
|
15 |
+
model_input=encode(model_2.encoders, user_input)
|
16 |
+
output=model.predict(model_input)
|
17 |
+
final_result = cols[np.argmax(output)]
|
18 |
+
return final_result
|
model_2.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sklearn.preprocessing import LabelEncoder
|
2 |
+
from sklearn.model_selection import train_test_split
|
3 |
+
from keras.models import Sequential
|
4 |
+
from keras.layers import Dense
|
5 |
+
import pandas as pd
|
6 |
+
data = pd.read_csv(r"C:\Users\SARUMATHI\Desktop\Prakruti_2\Book_updated.csv")
|
7 |
+
target = data["Prakruti type"]
|
8 |
+
train = data.drop(['Prakruti type'],axis = 1)
|
9 |
+
classes = train.columns
|
10 |
+
encoders = []
|
11 |
+
unique_output=[]
|
12 |
+
for col in train.columns:
|
13 |
+
le = LabelEncoder()
|
14 |
+
unique_output.append((train[col].unique()).tolist())
|
15 |
+
train[col] = le.fit_transform(train[col])
|
16 |
+
encoders.append(le)
|
17 |
+
target2 = pd.get_dummies(target)
|
18 |
+
model = Sequential([
|
19 |
+
Dense(64,activation='relu',input_shape=(18,)),
|
20 |
+
Dense(32,activation='relu'),
|
21 |
+
Dense(7,activation='softmax')
|
22 |
+
])
|
23 |
+
model.compile(optimizer='adam',metrics='categorical_crossentropy',loss='mean_squared_error')
|
24 |
+
x_tr,x_te,y_tr,y_te=train_test_split(train,target2,random_state=123,test_size=0.2)
|
25 |
+
model.fit(x_tr,y_tr,epochs = 1000,batch_size=12,verbose= 1)
|
26 |
+
|
stream_2.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from main_2 import input_output
|
3 |
+
from model_2 import classes,unique_output
|
4 |
+
import pandas as pd
|
5 |
+
st.title("Chatbot to know Your Prakruti:smile:")
|
6 |
+
st.write("Hello! I'm your chatbot. You can ask any query to me")
|
7 |
+
Questions = []
|
8 |
+
Q = []
|
9 |
+
for i in range(18):
|
10 |
+
st.write(f"What is Your {classes[i]}?")
|
11 |
+
options = unique_output[i]
|
12 |
+
selected_option = st.selectbox(f"Choose your answer:",options)
|
13 |
+
Q.append(selected_option)
|
14 |
+
Questions.append(Q)
|
15 |
+
Questions = pd.DataFrame(Questions)
|
16 |
+
if st.button("Process"):
|
17 |
+
Output = input_output(Questions)
|
18 |
+
st.write(f"Your Prakruti is: {Output}")
|
19 |
+
# if "messages" not in st.session_state:
|
20 |
+
# st.session_state.messages = []
|
21 |
+
# for message in st.session_state.messages:
|
22 |
+
# with st.chat_message(message["role"]):
|
23 |
+
# st.markdown(message["content"])
|
24 |
+
# prompt = st.chat_input("What is up?")
|
25 |
+
# if prompt:
|
26 |
+
# with st.chat_message("user"):
|
27 |
+
# st.markdown(prompt)
|
28 |
+
# st.session_state.messages.append({"role":"user","content":prompt})
|
29 |
+
# response = f"ChatBot: {main.prints(prompt)}"
|
30 |
+
# with st.chat_message("assistant"):
|
31 |
+
# st.markdown(response)
|
32 |
+
# st.session_state.messages.append({"role":"assistant","content":response})
|