|
import streamlit as st |
|
from llama_index.core import StorageContext, load_index_from_storage, VectorStoreIndex, SimpleDirectoryReader, ChatPromptTemplate |
|
from llama_index.llms.huggingface import HuggingFaceInferenceAPI |
|
from dotenv import load_dotenv |
|
from llama_index.embeddings.huggingface import HuggingFaceEmbedding |
|
from llama_index.core import Settings |
|
import os |
|
import base64 |
|
import os |
|
import shutil |
|
|
|
|
|
load_dotenv() |
|
|
|
|
|
Settings.llm = HuggingFaceInferenceAPI( |
|
model_name="jzhang38/tinyllama-1.1b", |
|
tokenizer_name="jzhang38/tinyllama-1.1b", |
|
context_window=2048, |
|
token=os.getenv("HF_TOKEN"), |
|
max_new_tokens=512, |
|
generate_kwargs={"temperature": 0.1}, |
|
) |
|
Settings.embed_model = HuggingFaceEmbedding( |
|
model_name="BAAI/bge-small-en-v1.5" |
|
) |
|
|
|
|
|
|
|
PERSIST_DIR = "./db" |
|
DATA_DIR = "data" |
|
|
|
|
|
try: |
|
if os.path.exists(DATA_DIR): |
|
shutil.rmtree(DATA_DIR) |
|
os.makedirs(DATA_DIR) |
|
|
|
except Exception as e: |
|
print(f"Error creating {DATA_DIR}: {e}") |
|
|
|
try: |
|
if os.path.exists(PERSIST_DIR): |
|
shutil.rmtree(PERSIST_DIR) |
|
os.makedirs(PERSIST_DIR) |
|
|
|
except Exception as e: |
|
print(f"Error creating {PERSIST_DIR}: {e}") |
|
|
|
def displayPDF(file): |
|
with open(file, "rb") as f: |
|
base64_pdf = base64.b64encode(f.read()).decode('utf-8') |
|
pdf_display = f'<iframe src="data:application/pdf;base64,{base64_pdf}" width="100%" height="600" type="application/pdf"></iframe>' |
|
st.markdown(pdf_display, unsafe_allow_html=True) |
|
|
|
def data_ingestion(): |
|
documents = SimpleDirectoryReader(DATA_DIR).load_data() |
|
storage_context = StorageContext.from_defaults() |
|
index = VectorStoreIndex.from_documents(documents) |
|
index.storage_context.persist(persist_dir=PERSIST_DIR) |
|
|
|
def handle_query(query): |
|
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR) |
|
index = load_index_from_storage(storage_context) |
|
chat_text_qa_msgs = [ |
|
( |
|
"user", |
|
"""You are a Q&A assistant named ĀpaḥSmṛtiḥ, created by Rohit. You have a specific response programmed for when users specifically ask about your creator, Rohit. The response is: |
|
"I was created by Rohit as a prototype for solving the water crisis in India. He is an AI enthusiast focused on solving complex problems through innovative solutions. |
|
He specializes in machine learning, deep learning, and NLP, striving to push the boundaries of AI to explore new possibilities." |
|
For all other inquiries, your main goal is to provide answers related to water conservation and management in India as accurately as possible. Here’s a refined guide prompt to assist you in this role. |
|
Context: |
|
{context_str} |
|
Question: |
|
{query_str} |
|
""" |
|
) |
|
] |
|
text_qa_template = ChatPromptTemplate.from_messages(chat_text_qa_msgs) |
|
|
|
query_engine = index.as_query_engine(text_qa_template=text_qa_template) |
|
answer = query_engine.query(query) |
|
|
|
if hasattr(answer, 'response'): |
|
return answer.response |
|
elif isinstance(answer, dict) and 'response' in answer: |
|
return answer['response'] |
|
else: |
|
return "Sorry, I couldn't find an answer." |
|
|
|
|
|
|
|
|
|
st.markdown("ĀpaḥSmṛtiḥ Flowing Memories of Water Conservation. ") |
|
st.markdown("The model is still under finetuning and updates\nThe model is designed to give genralized answer not specific facts....") |
|
st.markdown("start chat ...") |
|
|
|
if 'messages' not in st.session_state: |
|
st.session_state.messages = [{'role': 'assistant', "content": 'Hello! Upload a PDF and ask me anything about its content.'}] |
|
|
|
with st.sidebar: |
|
st.title("Menu:") |
|
uploaded_file = st.file_uploader("Upload your PDF Files and Click on the Submit & Process Button") |
|
if st.button("Submit & Process"): |
|
with st.spinner("Processing..."): |
|
filepath = "data/saved_pdf.pdf" |
|
with open(filepath, "wb") as f: |
|
f.write(uploaded_file.getbuffer()) |
|
|
|
data_ingestion() |
|
st.success("Done") |
|
|
|
user_prompt = st.chat_input("Ask me anything about the content of the PDF:") |
|
if user_prompt: |
|
st.session_state.messages.append({'role': 'user', "content": user_prompt}) |
|
response = handle_query(user_prompt) |
|
st.session_state.messages.append({'role': 'assistant', "content": response}) |
|
|
|
for message in st.session_state.messages: |
|
with st.chat_message(message['role']): |
|
st.write(message['content']) |