Spaces:
Runtime error
Runtime error
Rongjiehuang
commited on
Commit
·
64e7f2f
0
Parent(s):
init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +32 -0
- .gitignore +151 -0
- LICENSE +21 -0
- README.md +10 -0
- checkpoints/FastDiff/config.yaml +149 -0
- checkpoints/FastDiff/model_ckpt_steps_500000.ckpt +3 -0
- checkpoints/ProDiff/config.yaml +205 -0
- checkpoints/ProDiff/model_ckpt_steps_200000.ckpt +3 -0
- checkpoints/ProDiff_Teacher/config.yaml +205 -0
- checkpoints/ProDiff_Teacher/model_ckpt_steps_188000.ckpt +3 -0
- data/binary/LJSpeech/phone_set.json +1 -0
- data/binary/LJSpeech/spk_map.json +1 -0
- data/binary/LJSpeech/train_f0s_mean_std.npy +3 -0
- data_gen/tts/base_binarizer.py +224 -0
- data_gen/tts/base_preprocess.py +245 -0
- data_gen/tts/bin/binarize.py +20 -0
- data_gen/tts/data_gen_utils.py +352 -0
- data_gen/tts/txt_processors/__init__.py +1 -0
- data_gen/tts/txt_processors/base_text_processor.py +47 -0
- data_gen/tts/txt_processors/en.py +77 -0
- data_gen/tts/wav_processors/__init__.py +2 -0
- data_gen/tts/wav_processors/base_processor.py +25 -0
- data_gen/tts/wav_processors/common_processors.py +86 -0
- egs/datasets/audio/libritts/base_text2mel.yaml +14 -0
- egs/datasets/audio/libritts/fs2.yaml +3 -0
- egs/datasets/audio/libritts/pre_align.py +18 -0
- egs/datasets/audio/libritts/pwg.yaml +8 -0
- egs/datasets/audio/lj/base_mel2wav.yaml +5 -0
- egs/datasets/audio/lj/pre_align.py +13 -0
- egs/datasets/audio/lj/pwg.yaml +3 -0
- egs/datasets/audio/vctk/base_mel2wav.yaml +3 -0
- egs/datasets/audio/vctk/fs2.yaml +12 -0
- egs/datasets/audio/vctk/pre_align.py +22 -0
- egs/datasets/audio/vctk/pwg.yaml +6 -0
- egs/egs_bases/config_base.yaml +46 -0
- egs/egs_bases/tts/base.yaml +112 -0
- egs/egs_bases/tts/fs2.yaml +102 -0
- egs/egs_bases/tts/vocoder/base.yaml +34 -0
- egs/egs_bases/tts/vocoder/pwg.yaml +82 -0
- inference/ProDiff.py +49 -0
- inference/ProDiff_Teacher.py +41 -0
- inference/base_tts_infer.py +167 -0
- inference/gradio/gradio_settings.yaml +41 -0
- inference/gradio/infer.py +69 -0
- modules/FastDiff/config/FastDiff.yaml +7 -0
- modules/FastDiff/config/FastDiff_libritts.yaml +7 -0
- modules/FastDiff/config/FastDiff_sc09.yaml +25 -0
- modules/FastDiff/config/FastDiff_tacotron.yaml +58 -0
- modules/FastDiff/config/FastDiff_vctk.yaml +7 -0
- modules/FastDiff/config/base.yaml +157 -0
.gitattributes
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
23 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Project ignore
|
2 |
+
|
3 |
+
/ParallelWaveGAN
|
4 |
+
/wavegan_pretrained*
|
5 |
+
/pretrained_models
|
6 |
+
rsync
|
7 |
+
.idea
|
8 |
+
.DS_Store
|
9 |
+
bak
|
10 |
+
tmp
|
11 |
+
*.tar.gz
|
12 |
+
# mfa and kaldi
|
13 |
+
kaldi_align/exp
|
14 |
+
mfa
|
15 |
+
montreal-forced-aligner
|
16 |
+
mos
|
17 |
+
nbs
|
18 |
+
/configs_usr/*
|
19 |
+
!/configs_usr/.gitkeep
|
20 |
+
/fast_transformers
|
21 |
+
/rnnoise
|
22 |
+
/usr/*
|
23 |
+
!/usr/.gitkeep
|
24 |
+
|
25 |
+
# Created by .ignore support plugin (hsz.mobi)
|
26 |
+
### Python template
|
27 |
+
# Byte-compiled / optimized / DLL files
|
28 |
+
__pycache__/
|
29 |
+
*.py[cod]
|
30 |
+
*$py.class
|
31 |
+
|
32 |
+
# C extensions
|
33 |
+
*.so
|
34 |
+
|
35 |
+
# Distribution / packaging
|
36 |
+
.Python
|
37 |
+
build/
|
38 |
+
develop-eggs/
|
39 |
+
dist/
|
40 |
+
downloads/
|
41 |
+
eggs/
|
42 |
+
.eggs/
|
43 |
+
lib/
|
44 |
+
lib64/
|
45 |
+
parts/
|
46 |
+
sdist/
|
47 |
+
var/
|
48 |
+
wheels/
|
49 |
+
pip-wheel-metadata/
|
50 |
+
share/python-wheels/
|
51 |
+
*.egg-info/
|
52 |
+
.installed.cfg
|
53 |
+
*.egg
|
54 |
+
MANIFEST
|
55 |
+
|
56 |
+
# PyInstaller
|
57 |
+
# Usually these files are written by a python script from a template
|
58 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
59 |
+
*.manifest
|
60 |
+
*.spec
|
61 |
+
|
62 |
+
# Installer logs
|
63 |
+
pip-log.txt
|
64 |
+
pip-delete-this-directory.txt
|
65 |
+
|
66 |
+
# Unit test / coverage reports
|
67 |
+
htmlcov/
|
68 |
+
.tox/
|
69 |
+
.nox/
|
70 |
+
.coverage
|
71 |
+
.coverage.*
|
72 |
+
.cache
|
73 |
+
nosetests.xml
|
74 |
+
coverage.xml
|
75 |
+
*.cover
|
76 |
+
.hypothesis/
|
77 |
+
.pytest_cache/
|
78 |
+
|
79 |
+
# Translations
|
80 |
+
*.mo
|
81 |
+
*.pot
|
82 |
+
|
83 |
+
# Django stuff:
|
84 |
+
*.log
|
85 |
+
local_settings.py
|
86 |
+
db.sqlite3
|
87 |
+
db.sqlite3-journal
|
88 |
+
|
89 |
+
# Flask stuff:
|
90 |
+
instance/
|
91 |
+
.webassets-cache
|
92 |
+
|
93 |
+
# Scrapy stuff:
|
94 |
+
.scrapy
|
95 |
+
|
96 |
+
# Sphinx documentation
|
97 |
+
docs/_build/
|
98 |
+
|
99 |
+
# PyBuilder
|
100 |
+
target/
|
101 |
+
|
102 |
+
# Jupyter Notebook
|
103 |
+
.ipynb_checkpoints
|
104 |
+
|
105 |
+
# IPython
|
106 |
+
profile_default/
|
107 |
+
ipython_config.py
|
108 |
+
|
109 |
+
# pyenv
|
110 |
+
.python-version
|
111 |
+
|
112 |
+
# pipenv
|
113 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
114 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
115 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
116 |
+
# install all needed dependencies.
|
117 |
+
#Pipfile.lock
|
118 |
+
|
119 |
+
# celery beat schedule file
|
120 |
+
celerybeat-schedule
|
121 |
+
|
122 |
+
# SageMath parsed files
|
123 |
+
*.sage.py
|
124 |
+
|
125 |
+
# Environments
|
126 |
+
.env
|
127 |
+
.venv
|
128 |
+
env/
|
129 |
+
venv/
|
130 |
+
ENV/
|
131 |
+
env.bak/
|
132 |
+
venv.bak/
|
133 |
+
|
134 |
+
# Spyder project settings
|
135 |
+
.spyderproject
|
136 |
+
.spyproject
|
137 |
+
|
138 |
+
# Rope project settings
|
139 |
+
.ropeproject
|
140 |
+
|
141 |
+
# mkdocs documentation
|
142 |
+
/site
|
143 |
+
|
144 |
+
# mypy
|
145 |
+
.mypy_cache/
|
146 |
+
.dmypy.json
|
147 |
+
dmypy.json
|
148 |
+
|
149 |
+
# Pyre type checker
|
150 |
+
.pyre/
|
151 |
+
将删除 datasets/remi/test/
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2021 Jinglin Liu
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: ProDiff
|
3 |
+
emoji: 🤗
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: orange
|
6 |
+
sdk: gradio
|
7 |
+
app_file: "inference/gradio/infer.py"
|
8 |
+
pinned: false
|
9 |
+
---
|
10 |
+
|
checkpoints/FastDiff/config.yaml
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
N: ''
|
2 |
+
T: 1000
|
3 |
+
accumulate_grad_batches: 1
|
4 |
+
amp: false
|
5 |
+
audio_channels: 1
|
6 |
+
audio_num_mel_bins: 80
|
7 |
+
audio_sample_rate: 22050
|
8 |
+
aux_context_window: 0
|
9 |
+
beta_0: 1.0e-06
|
10 |
+
beta_T: 0.01
|
11 |
+
binarization_args:
|
12 |
+
reset_phone_dict: true
|
13 |
+
reset_word_dict: true
|
14 |
+
shuffle: false
|
15 |
+
trim_eos_bos: false
|
16 |
+
with_align: false
|
17 |
+
with_f0: false
|
18 |
+
with_f0cwt: false
|
19 |
+
with_linear: false
|
20 |
+
with_spk_embed: false
|
21 |
+
with_spk_id: true
|
22 |
+
with_txt: false
|
23 |
+
with_wav: true
|
24 |
+
with_word: false
|
25 |
+
binarizer_cls: data_gen.tts.vocoder_binarizer.VocoderBinarizer
|
26 |
+
binary_data_dir: data/binary/LJSpeech
|
27 |
+
check_val_every_n_epoch: 10
|
28 |
+
clip_grad_norm: 1
|
29 |
+
clip_grad_value: 0
|
30 |
+
cond_channels: 80
|
31 |
+
debug: false
|
32 |
+
dec_ffn_kernel_size: 9
|
33 |
+
dec_layers: 4
|
34 |
+
dict_dir: ''
|
35 |
+
diffusion_step_embed_dim_in: 128
|
36 |
+
diffusion_step_embed_dim_mid: 512
|
37 |
+
diffusion_step_embed_dim_out: 512
|
38 |
+
disc_start_steps: 40000
|
39 |
+
discriminator_grad_norm: 1
|
40 |
+
dropout: 0.0
|
41 |
+
ds_workers: 1
|
42 |
+
enc_ffn_kernel_size: 9
|
43 |
+
enc_layers: 4
|
44 |
+
endless_ds: true
|
45 |
+
eval_max_batches: -1
|
46 |
+
ffn_act: gelu
|
47 |
+
ffn_padding: SAME
|
48 |
+
fft_size: 1024
|
49 |
+
fmax: 7600
|
50 |
+
fmin: 80
|
51 |
+
frames_multiple: 1
|
52 |
+
gen_dir_name: ''
|
53 |
+
generator_grad_norm: 10
|
54 |
+
griffin_lim_iters: 60
|
55 |
+
hidden_size: 256
|
56 |
+
hop_size: 256
|
57 |
+
infer: false
|
58 |
+
inner_channels: 32
|
59 |
+
kpnet_conv_size: 3
|
60 |
+
kpnet_hidden_channels: 64
|
61 |
+
load_ckpt: ''
|
62 |
+
loud_norm: false
|
63 |
+
lr: 2e-4
|
64 |
+
lvc_kernel_size: 3
|
65 |
+
lvc_layers_each_block: 4
|
66 |
+
max_epochs: 1000
|
67 |
+
max_frames: 1548
|
68 |
+
max_input_tokens: 1550
|
69 |
+
max_samples: 25600
|
70 |
+
max_sentences: 20
|
71 |
+
max_tokens: 30000
|
72 |
+
max_updates: 1000000
|
73 |
+
max_valid_sentences: 1
|
74 |
+
max_valid_tokens: 60000
|
75 |
+
mel_loss: l1
|
76 |
+
mel_vmax: 1.5
|
77 |
+
mel_vmin: -6
|
78 |
+
mfa_version: 2
|
79 |
+
min_frames: 0
|
80 |
+
min_level_db: -100
|
81 |
+
noise_schedule: ''
|
82 |
+
num_ckpt_keep: 3
|
83 |
+
num_heads: 2
|
84 |
+
num_mels: 80
|
85 |
+
num_sanity_val_steps: -1
|
86 |
+
num_spk: 400
|
87 |
+
num_test_samples: 0
|
88 |
+
num_valid_plots: 10
|
89 |
+
optimizer_adam_beta1: 0.9
|
90 |
+
optimizer_adam_beta2: 0.98
|
91 |
+
out_wav_norm: false
|
92 |
+
pitch_extractor: parselmouth
|
93 |
+
pre_align_args:
|
94 |
+
allow_no_txt: false
|
95 |
+
denoise: false
|
96 |
+
nsample_per_mfa_group: 1000
|
97 |
+
sox_resample: false
|
98 |
+
sox_to_wav: false
|
99 |
+
trim_sil: false
|
100 |
+
txt_processor: en
|
101 |
+
use_tone: true
|
102 |
+
pre_align_cls: egs.datasets.audio.pre_align.PreAlign
|
103 |
+
print_nan_grads: false
|
104 |
+
processed_data_dir: data/processed/LJSpeech
|
105 |
+
profile_infer: false
|
106 |
+
raw_data_dir: data/raw/LJSpeech-1.1
|
107 |
+
ref_level_db: 20
|
108 |
+
rename_tmux: true
|
109 |
+
resume_from_checkpoint: 0
|
110 |
+
save_best: true
|
111 |
+
save_codes: []
|
112 |
+
save_f0: false
|
113 |
+
save_gt: true
|
114 |
+
scheduler: rsqrt
|
115 |
+
seed: 1234
|
116 |
+
sort_by_len: true
|
117 |
+
task_cls: modules.FastDiff.task.FastDiff.FastDiffTask
|
118 |
+
tb_log_interval: 100
|
119 |
+
test_ids: []
|
120 |
+
test_input_dir: ''
|
121 |
+
test_mel_dir: ''
|
122 |
+
test_num: 100
|
123 |
+
test_set_name: test
|
124 |
+
train_set_name: train
|
125 |
+
train_sets: ''
|
126 |
+
upsample_ratios:
|
127 |
+
- 8
|
128 |
+
- 8
|
129 |
+
- 4
|
130 |
+
use_pitch_embed: false
|
131 |
+
use_spk_embed: false
|
132 |
+
use_spk_id: false
|
133 |
+
use_split_spk_id: false
|
134 |
+
use_wav: true
|
135 |
+
use_weight_norm: true
|
136 |
+
use_word_input: false
|
137 |
+
val_check_interval: 2000
|
138 |
+
valid_infer_interval: 10000
|
139 |
+
valid_monitor_key: val_loss
|
140 |
+
valid_monitor_mode: min
|
141 |
+
valid_set_name: valid
|
142 |
+
vocoder_denoise_c: 0.0
|
143 |
+
warmup_updates: 8000
|
144 |
+
weight_decay: 0
|
145 |
+
win_length: null
|
146 |
+
win_size: 1024
|
147 |
+
window: hann
|
148 |
+
word_size: 30000
|
149 |
+
work_dir: checkpoints/FastDiff
|
checkpoints/FastDiff/model_ckpt_steps_500000.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee7b6022e525c71a6025b41eeeafff9d6186b52cba76b580d6986bc8674902f3
|
3 |
+
size 183951271
|
checkpoints/ProDiff/config.yaml
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accumulate_grad_batches: 1
|
2 |
+
amp: false
|
3 |
+
audio_num_mel_bins: 80
|
4 |
+
audio_sample_rate: 22050
|
5 |
+
base_config:
|
6 |
+
- ./base.yaml
|
7 |
+
binarization_args:
|
8 |
+
reset_phone_dict: true
|
9 |
+
reset_word_dict: true
|
10 |
+
shuffle: false
|
11 |
+
trim_eos_bos: false
|
12 |
+
trim_sil: false
|
13 |
+
with_align: true
|
14 |
+
with_f0: true
|
15 |
+
with_f0cwt: false
|
16 |
+
with_linear: false
|
17 |
+
with_spk_embed: false
|
18 |
+
with_spk_id: true
|
19 |
+
with_txt: true
|
20 |
+
with_wav: false
|
21 |
+
with_word: true
|
22 |
+
binarizer_cls: data_gen.tts.base_binarizer.BaseBinarizer
|
23 |
+
binary_data_dir: data/binary/LJSpeech
|
24 |
+
check_val_every_n_epoch: 10
|
25 |
+
clip_grad_norm: 1
|
26 |
+
clip_grad_value: 0
|
27 |
+
conv_use_pos: false
|
28 |
+
cwt_add_f0_loss: false
|
29 |
+
cwt_hidden_size: 128
|
30 |
+
cwt_layers: 2
|
31 |
+
cwt_loss: l1
|
32 |
+
cwt_std_scale: 0.8
|
33 |
+
debug: false
|
34 |
+
dec_dilations:
|
35 |
+
- 1
|
36 |
+
- 1
|
37 |
+
- 1
|
38 |
+
- 1
|
39 |
+
dec_ffn_kernel_size: 9
|
40 |
+
dec_inp_add_noise: false
|
41 |
+
dec_kernel_size: 5
|
42 |
+
dec_layers: 4
|
43 |
+
dec_num_heads: 2
|
44 |
+
decoder_rnn_dim: 0
|
45 |
+
decoder_type: fft
|
46 |
+
dict_dir: ''
|
47 |
+
diff_decoder_type: wavenet
|
48 |
+
diff_loss_type: l1
|
49 |
+
dilation_cycle_length: 1
|
50 |
+
dropout: 0.1
|
51 |
+
ds_workers: 2
|
52 |
+
dur_enc_hidden_stride_kernel:
|
53 |
+
- 0,2,3
|
54 |
+
- 0,2,3
|
55 |
+
- 0,1,3
|
56 |
+
dur_loss: mse
|
57 |
+
dur_predictor_kernel: 3
|
58 |
+
dur_predictor_layers: 2
|
59 |
+
enc_dec_norm: ln
|
60 |
+
enc_dilations:
|
61 |
+
- 1
|
62 |
+
- 1
|
63 |
+
- 1
|
64 |
+
- 1
|
65 |
+
enc_ffn_kernel_size: 9
|
66 |
+
enc_kernel_size: 5
|
67 |
+
enc_layers: 4
|
68 |
+
encoder_K: 8
|
69 |
+
encoder_type: fft
|
70 |
+
endless_ds: true
|
71 |
+
ffn_act: gelu
|
72 |
+
ffn_hidden_size: 1024
|
73 |
+
ffn_padding: SAME
|
74 |
+
fft_size: 1024
|
75 |
+
fmax: 7600
|
76 |
+
fmin: 80
|
77 |
+
frames_multiple: 1
|
78 |
+
gen_dir_name: ''
|
79 |
+
gen_tgt_spk_id: -1
|
80 |
+
griffin_lim_iters: 60
|
81 |
+
hidden_size: 256
|
82 |
+
hop_size: 256
|
83 |
+
infer: false
|
84 |
+
keep_bins: 80
|
85 |
+
lambda_commit: 0.25
|
86 |
+
lambda_energy: 0.1
|
87 |
+
lambda_f0: 1.0
|
88 |
+
lambda_ph_dur: 0.1
|
89 |
+
lambda_sent_dur: 1.0
|
90 |
+
lambda_uv: 1.0
|
91 |
+
lambda_word_dur: 1.0
|
92 |
+
layers_in_block: 2
|
93 |
+
load_ckpt: ''
|
94 |
+
loud_norm: false
|
95 |
+
lr: 1.0
|
96 |
+
max_beta: 0.06
|
97 |
+
max_epochs: 1000
|
98 |
+
max_frames: 1548
|
99 |
+
max_input_tokens: 1550
|
100 |
+
max_sentences: 48
|
101 |
+
max_tokens: 32000
|
102 |
+
max_updates: 200000
|
103 |
+
max_valid_sentences: 1
|
104 |
+
max_valid_tokens: 60000
|
105 |
+
mel_loss: ssim:0.5|l1:0.5
|
106 |
+
mel_vmax: 1.5
|
107 |
+
mel_vmin: -6
|
108 |
+
min_frames: 0
|
109 |
+
min_level_db: -100
|
110 |
+
num_ckpt_keep: 3
|
111 |
+
num_heads: 2
|
112 |
+
num_sanity_val_steps: -1
|
113 |
+
num_spk: 1
|
114 |
+
num_test_samples: 0
|
115 |
+
num_valid_plots: 10
|
116 |
+
optimizer_adam_beta1: 0.9
|
117 |
+
optimizer_adam_beta2: 0.98
|
118 |
+
out_wav_norm: false
|
119 |
+
pitch_ar: false
|
120 |
+
pitch_embed_type: 0
|
121 |
+
pitch_enc_hidden_stride_kernel:
|
122 |
+
- 0,2,5
|
123 |
+
- 0,2,5
|
124 |
+
- 0,2,5
|
125 |
+
pitch_extractor: parselmouth
|
126 |
+
pitch_loss: l1
|
127 |
+
pitch_norm: standard
|
128 |
+
pitch_ssim_win: 11
|
129 |
+
pitch_type: frame
|
130 |
+
pre_align_args:
|
131 |
+
allow_no_txt: false
|
132 |
+
denoise: false
|
133 |
+
sox_resample: false
|
134 |
+
sox_to_wav: false
|
135 |
+
trim_sil: false
|
136 |
+
txt_processor: en
|
137 |
+
use_tone: true
|
138 |
+
pre_align_cls: ''
|
139 |
+
predictor_dropout: 0.5
|
140 |
+
predictor_grad: 0.1
|
141 |
+
predictor_hidden: -1
|
142 |
+
predictor_kernel: 5
|
143 |
+
predictor_layers: 2
|
144 |
+
pretrain_fs_ckpt: ''
|
145 |
+
print_nan_grads: false
|
146 |
+
processed_data_dir: data/processed/LJSpeech
|
147 |
+
profile_infer: false
|
148 |
+
raw_data_dir: data/raw/LJSpeech
|
149 |
+
ref_hidden_stride_kernel:
|
150 |
+
- 0,3,5
|
151 |
+
- 0,3,5
|
152 |
+
- 0,2,5
|
153 |
+
- 0,2,5
|
154 |
+
- 0,2,5
|
155 |
+
ref_level_db: 20
|
156 |
+
ref_norm_layer: bn
|
157 |
+
rename_tmux: true
|
158 |
+
residual_channels: 256
|
159 |
+
residual_layers: 20
|
160 |
+
resume_from_checkpoint: 0
|
161 |
+
save_best: true
|
162 |
+
save_codes: []
|
163 |
+
save_f0: false
|
164 |
+
save_gt: true
|
165 |
+
schedule_type: vpsde
|
166 |
+
scheduler: rsqrt
|
167 |
+
seed: 1234
|
168 |
+
sil_add_noise: false
|
169 |
+
sort_by_len: true
|
170 |
+
spec_max: []
|
171 |
+
spec_min: []
|
172 |
+
task_cls: modules.ProDiff.task.ProDiff_task.ProDiff_Task
|
173 |
+
tb_log_interval: 100
|
174 |
+
teacher_ckpt: checkpoints/ProDiff_Teacher/model_ckpt_steps_188000.ckpt
|
175 |
+
test_ids: []
|
176 |
+
test_input_dir: ''
|
177 |
+
test_num: 100
|
178 |
+
test_set_name: test
|
179 |
+
timesteps: 4
|
180 |
+
train_set_name: train
|
181 |
+
train_sets: ''
|
182 |
+
use_cond_disc: true
|
183 |
+
use_energy_embed: true
|
184 |
+
use_gt_dur: true
|
185 |
+
use_gt_f0: true
|
186 |
+
use_pitch_embed: true
|
187 |
+
use_pos_embed: true
|
188 |
+
use_ref_enc: false
|
189 |
+
use_spk_embed: false
|
190 |
+
use_spk_id: false
|
191 |
+
use_split_spk_id: false
|
192 |
+
use_uv: true
|
193 |
+
use_var_enc: false
|
194 |
+
val_check_interval: 2000
|
195 |
+
valid_infer_interval: 10000
|
196 |
+
valid_monitor_key: val_loss
|
197 |
+
valid_monitor_mode: min
|
198 |
+
valid_set_name: valid
|
199 |
+
var_enc_vq_codes: 64
|
200 |
+
vocoder_denoise_c: 0.0
|
201 |
+
warmup_updates: 2000
|
202 |
+
weight_decay: 0
|
203 |
+
win_size: 1024
|
204 |
+
word_size: 30000
|
205 |
+
work_dir: checkpoints/ProDiff
|
checkpoints/ProDiff/model_ckpt_steps_200000.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cc8aad355c297b010e2c362341f736b3477744af76e02f6c9965409a7e9113a
|
3 |
+
size 349055740
|
checkpoints/ProDiff_Teacher/config.yaml
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accumulate_grad_batches: 1
|
2 |
+
amp: false
|
3 |
+
audio_num_mel_bins: 80
|
4 |
+
audio_sample_rate: 22050
|
5 |
+
base_config:
|
6 |
+
- ./base.yaml
|
7 |
+
binarization_args:
|
8 |
+
reset_phone_dict: true
|
9 |
+
reset_word_dict: true
|
10 |
+
shuffle: false
|
11 |
+
trim_eos_bos: false
|
12 |
+
trim_sil: false
|
13 |
+
with_align: true
|
14 |
+
with_f0: true
|
15 |
+
with_f0cwt: false
|
16 |
+
with_linear: false
|
17 |
+
with_spk_embed: false
|
18 |
+
with_spk_id: true
|
19 |
+
with_txt: true
|
20 |
+
with_wav: false
|
21 |
+
with_word: true
|
22 |
+
binarizer_cls: data_gen.tts.base_binarizer.BaseBinarizer
|
23 |
+
binary_data_dir: data/binary/LJSpeech
|
24 |
+
check_val_every_n_epoch: 10
|
25 |
+
clip_grad_norm: 1
|
26 |
+
clip_grad_value: 0
|
27 |
+
conv_use_pos: false
|
28 |
+
cwt_add_f0_loss: false
|
29 |
+
cwt_hidden_size: 128
|
30 |
+
cwt_layers: 2
|
31 |
+
cwt_loss: l1
|
32 |
+
cwt_std_scale: 0.8
|
33 |
+
debug: false
|
34 |
+
dec_dilations:
|
35 |
+
- 1
|
36 |
+
- 1
|
37 |
+
- 1
|
38 |
+
- 1
|
39 |
+
dec_ffn_kernel_size: 9
|
40 |
+
dec_inp_add_noise: false
|
41 |
+
dec_kernel_size: 5
|
42 |
+
dec_layers: 4
|
43 |
+
dec_num_heads: 2
|
44 |
+
decoder_rnn_dim: 0
|
45 |
+
decoder_type: fft
|
46 |
+
dict_dir: ''
|
47 |
+
diff_decoder_type: wavenet
|
48 |
+
diff_loss_type: l1
|
49 |
+
dilation_cycle_length: 1
|
50 |
+
dropout: 0.1
|
51 |
+
ds_workers: 2
|
52 |
+
dur_enc_hidden_stride_kernel:
|
53 |
+
- 0,2,3
|
54 |
+
- 0,2,3
|
55 |
+
- 0,1,3
|
56 |
+
dur_loss: mse
|
57 |
+
dur_predictor_kernel: 3
|
58 |
+
dur_predictor_layers: 2
|
59 |
+
enc_dec_norm: ln
|
60 |
+
enc_dilations:
|
61 |
+
- 1
|
62 |
+
- 1
|
63 |
+
- 1
|
64 |
+
- 1
|
65 |
+
enc_ffn_kernel_size: 9
|
66 |
+
enc_kernel_size: 5
|
67 |
+
enc_layers: 4
|
68 |
+
encoder_K: 8
|
69 |
+
encoder_type: fft
|
70 |
+
endless_ds: true
|
71 |
+
ffn_act: gelu
|
72 |
+
ffn_hidden_size: 1024
|
73 |
+
ffn_padding: SAME
|
74 |
+
fft_size: 1024
|
75 |
+
fmax: 7600
|
76 |
+
fmin: 80
|
77 |
+
frames_multiple: 1
|
78 |
+
gen_dir_name: ''
|
79 |
+
gen_tgt_spk_id: -1
|
80 |
+
griffin_lim_iters: 60
|
81 |
+
hidden_size: 256
|
82 |
+
hop_size: 256
|
83 |
+
infer: false
|
84 |
+
keep_bins: 80
|
85 |
+
lambda_commit: 0.25
|
86 |
+
lambda_energy: 0.1
|
87 |
+
lambda_f0: 1.0
|
88 |
+
lambda_ph_dur: 0.1
|
89 |
+
lambda_sent_dur: 1.0
|
90 |
+
lambda_uv: 1.0
|
91 |
+
lambda_word_dur: 1.0
|
92 |
+
layers_in_block: 2
|
93 |
+
load_ckpt: ''
|
94 |
+
loud_norm: false
|
95 |
+
lr: 1.0
|
96 |
+
max_beta: 0.06
|
97 |
+
max_epochs: 1000
|
98 |
+
max_frames: 1548
|
99 |
+
max_input_tokens: 1550
|
100 |
+
max_sentences: 48
|
101 |
+
max_tokens: 32000
|
102 |
+
max_updates: 200000
|
103 |
+
max_valid_sentences: 1
|
104 |
+
max_valid_tokens: 60000
|
105 |
+
mel_loss: ssim:0.5|l1:0.5
|
106 |
+
mel_vmax: 1.5
|
107 |
+
mel_vmin: -6
|
108 |
+
min_frames: 0
|
109 |
+
min_level_db: -100
|
110 |
+
num_ckpt_keep: 3
|
111 |
+
num_heads: 2
|
112 |
+
num_sanity_val_steps: -1
|
113 |
+
num_spk: 1
|
114 |
+
num_test_samples: 20
|
115 |
+
num_valid_plots: 10
|
116 |
+
optimizer_adam_beta1: 0.9
|
117 |
+
optimizer_adam_beta2: 0.98
|
118 |
+
out_wav_norm: false
|
119 |
+
pitch_ar: false
|
120 |
+
pitch_embed_type: 0
|
121 |
+
pitch_enc_hidden_stride_kernel:
|
122 |
+
- 0,2,5
|
123 |
+
- 0,2,5
|
124 |
+
- 0,2,5
|
125 |
+
pitch_extractor: parselmouth
|
126 |
+
pitch_loss: l1
|
127 |
+
pitch_norm: standard
|
128 |
+
pitch_ssim_win: 11
|
129 |
+
pitch_type: frame
|
130 |
+
pre_align_args:
|
131 |
+
allow_no_txt: false
|
132 |
+
denoise: false
|
133 |
+
sox_resample: false
|
134 |
+
sox_to_wav: false
|
135 |
+
trim_sil: false
|
136 |
+
txt_processor: en
|
137 |
+
use_tone: true
|
138 |
+
pre_align_cls: egs.datasets.audio.lj.pre_align.LJPreAlign
|
139 |
+
predictor_dropout: 0.5
|
140 |
+
predictor_grad: 0.1
|
141 |
+
predictor_hidden: -1
|
142 |
+
predictor_kernel: 5
|
143 |
+
predictor_layers: 2
|
144 |
+
pretrain_fs_ckpt: ''
|
145 |
+
print_nan_grads: false
|
146 |
+
processed_data_dir: data/processed/LJSpeech
|
147 |
+
profile_infer: false
|
148 |
+
raw_data_dir: data/raw/LJSpeech
|
149 |
+
ref_hidden_stride_kernel:
|
150 |
+
- 0,3,5
|
151 |
+
- 0,3,5
|
152 |
+
- 0,2,5
|
153 |
+
- 0,2,5
|
154 |
+
- 0,2,5
|
155 |
+
ref_level_db: 20
|
156 |
+
ref_norm_layer: bn
|
157 |
+
rename_tmux: true
|
158 |
+
residual_channels: 256
|
159 |
+
residual_layers: 20
|
160 |
+
resume_from_checkpoint: 0
|
161 |
+
save_best: true
|
162 |
+
save_codes: []
|
163 |
+
save_f0: false
|
164 |
+
save_gt: true
|
165 |
+
schedule_type: vpsde
|
166 |
+
scheduler: rsqrt
|
167 |
+
seed: 1234
|
168 |
+
sil_add_noise: false
|
169 |
+
sort_by_len: true
|
170 |
+
spec_max: []
|
171 |
+
spec_min: []
|
172 |
+
task_cls: modules.ProDiff.task.ProDiff_teacher_task.ProDiff_teacher_Task
|
173 |
+
tb_log_interval: 100
|
174 |
+
test_ids: []
|
175 |
+
test_input_dir: ''
|
176 |
+
test_num: 100
|
177 |
+
test_set_name: test
|
178 |
+
timescale: 1
|
179 |
+
timesteps: 4
|
180 |
+
train_set_name: train
|
181 |
+
train_sets: ''
|
182 |
+
use_cond_disc: true
|
183 |
+
use_energy_embed: true
|
184 |
+
use_gt_dur: true
|
185 |
+
use_gt_f0: true
|
186 |
+
use_pitch_embed: true
|
187 |
+
use_pos_embed: true
|
188 |
+
use_ref_enc: false
|
189 |
+
use_spk_embed: false
|
190 |
+
use_spk_id: false
|
191 |
+
use_split_spk_id: false
|
192 |
+
use_uv: true
|
193 |
+
use_var_enc: false
|
194 |
+
val_check_interval: 2000
|
195 |
+
valid_infer_interval: 10000
|
196 |
+
valid_monitor_key: val_loss
|
197 |
+
valid_monitor_mode: min
|
198 |
+
valid_set_name: valid
|
199 |
+
var_enc_vq_codes: 64
|
200 |
+
vocoder_denoise_c: 0.0
|
201 |
+
warmup_updates: 2000
|
202 |
+
weight_decay: 0
|
203 |
+
win_size: 1024
|
204 |
+
word_size: 30000
|
205 |
+
work_dir: checkpoints/ProDiff_Teacher1
|
checkpoints/ProDiff_Teacher/model_ckpt_steps_188000.ckpt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d3d02a215431c69dd54c1413b9a02cdc32795e2039ad9be857b12e85c470eea
|
3 |
+
size 342252871
|
data/binary/LJSpeech/phone_set.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
["!", ",", ".", ":", ";", "<BOS>", "<EOS>", "?", "AA0", "AA1", "AA2", "AE0", "AE1", "AE2", "AH0", "AH1", "AH2", "AO0", "AO1", "AO2", "AW0", "AW1", "AW2", "AY0", "AY1", "AY2", "B", "CH", "D", "DH", "EH0", "EH1", "EH2", "ER0", "ER1", "ER2", "EY0", "EY1", "EY2", "F", "G", "HH", "IH0", "IH1", "IH2", "IY0", "IY1", "IY2", "JH", "K", "L", "M", "N", "NG", "OW0", "OW1", "OW2", "OY0", "OY1", "OY2", "P", "R", "S", "SH", "T", "TH", "UH0", "UH1", "UH2", "UW0", "UW1", "UW2", "V", "W", "Y", "Z", "ZH", "|"]
|
data/binary/LJSpeech/spk_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"SPK1": 0}
|
data/binary/LJSpeech/train_f0s_mean_std.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8790d5a84d77143690ae71a1f1e7fc81359e69ead263dc440366f2164c739efd
|
3 |
+
size 144
|
data_gen/tts/base_binarizer.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
os.environ["OMP_NUM_THREADS"] = "1"
|
3 |
+
|
4 |
+
from utils.multiprocess_utils import chunked_multiprocess_run
|
5 |
+
import random
|
6 |
+
import traceback
|
7 |
+
import json
|
8 |
+
from resemblyzer import VoiceEncoder
|
9 |
+
from tqdm import tqdm
|
10 |
+
from data_gen.tts.data_gen_utils import get_mel2ph, get_pitch, build_phone_encoder
|
11 |
+
from utils.hparams import set_hparams, hparams
|
12 |
+
import numpy as np
|
13 |
+
from utils.indexed_datasets import IndexedDatasetBuilder
|
14 |
+
from vocoders.base_vocoder import VOCODERS
|
15 |
+
import pandas as pd
|
16 |
+
|
17 |
+
|
18 |
+
class BinarizationError(Exception):
|
19 |
+
pass
|
20 |
+
|
21 |
+
|
22 |
+
class BaseBinarizer:
|
23 |
+
def __init__(self, processed_data_dir=None):
|
24 |
+
if processed_data_dir is None:
|
25 |
+
processed_data_dir = hparams['processed_data_dir']
|
26 |
+
self.processed_data_dirs = processed_data_dir.split(",")
|
27 |
+
self.binarization_args = hparams['binarization_args']
|
28 |
+
self.pre_align_args = hparams['pre_align_args']
|
29 |
+
self.forced_align = self.pre_align_args['forced_align']
|
30 |
+
tg_dir = None
|
31 |
+
if self.forced_align == 'mfa':
|
32 |
+
tg_dir = 'mfa_outputs'
|
33 |
+
if self.forced_align == 'kaldi':
|
34 |
+
tg_dir = 'kaldi_outputs'
|
35 |
+
self.item2txt = {}
|
36 |
+
self.item2ph = {}
|
37 |
+
self.item2wavfn = {}
|
38 |
+
self.item2tgfn = {}
|
39 |
+
self.item2spk = {}
|
40 |
+
for ds_id, processed_data_dir in enumerate(self.processed_data_dirs):
|
41 |
+
self.meta_df = pd.read_csv(f"{processed_data_dir}/metadata_phone.csv", dtype=str)
|
42 |
+
for r_idx, r in self.meta_df.iterrows():
|
43 |
+
item_name = raw_item_name = r['item_name']
|
44 |
+
if len(self.processed_data_dirs) > 1:
|
45 |
+
item_name = f'ds{ds_id}_{item_name}'
|
46 |
+
self.item2txt[item_name] = r['txt']
|
47 |
+
self.item2ph[item_name] = r['ph']
|
48 |
+
self.item2wavfn[item_name] = os.path.join(hparams['raw_data_dir'], 'wavs', os.path.basename(r['wav_fn']).split('_')[1])
|
49 |
+
self.item2spk[item_name] = r.get('spk', 'SPK1')
|
50 |
+
if len(self.processed_data_dirs) > 1:
|
51 |
+
self.item2spk[item_name] = f"ds{ds_id}_{self.item2spk[item_name]}"
|
52 |
+
if tg_dir is not None:
|
53 |
+
self.item2tgfn[item_name] = f"{processed_data_dir}/{tg_dir}/{raw_item_name}.TextGrid"
|
54 |
+
self.item_names = sorted(list(self.item2txt.keys()))
|
55 |
+
if self.binarization_args['shuffle']:
|
56 |
+
random.seed(1234)
|
57 |
+
random.shuffle(self.item_names)
|
58 |
+
|
59 |
+
@property
|
60 |
+
def train_item_names(self):
|
61 |
+
return self.item_names[hparams['test_num']+hparams['valid_num']:]
|
62 |
+
|
63 |
+
@property
|
64 |
+
def valid_item_names(self):
|
65 |
+
return self.item_names[0: hparams['test_num']+hparams['valid_num']] #
|
66 |
+
|
67 |
+
@property
|
68 |
+
def test_item_names(self):
|
69 |
+
return self.item_names[0: hparams['test_num']] # Audios for MOS testing are in 'test_ids'
|
70 |
+
|
71 |
+
def build_spk_map(self):
|
72 |
+
spk_map = set()
|
73 |
+
for item_name in self.item_names:
|
74 |
+
spk_name = self.item2spk[item_name]
|
75 |
+
spk_map.add(spk_name)
|
76 |
+
spk_map = {x: i for i, x in enumerate(sorted(list(spk_map)))}
|
77 |
+
assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map)
|
78 |
+
return spk_map
|
79 |
+
|
80 |
+
def item_name2spk_id(self, item_name):
|
81 |
+
return self.spk_map[self.item2spk[item_name]]
|
82 |
+
|
83 |
+
def _phone_encoder(self):
|
84 |
+
ph_set_fn = f"{hparams['binary_data_dir']}/phone_set.json"
|
85 |
+
ph_set = []
|
86 |
+
if hparams['reset_phone_dict'] or not os.path.exists(ph_set_fn):
|
87 |
+
for processed_data_dir in self.processed_data_dirs:
|
88 |
+
ph_set += [x.split(' ')[0] for x in open(f'{processed_data_dir}/dict.txt').readlines()]
|
89 |
+
ph_set = sorted(set(ph_set))
|
90 |
+
json.dump(ph_set, open(ph_set_fn, 'w'))
|
91 |
+
else:
|
92 |
+
ph_set = json.load(open(ph_set_fn, 'r'))
|
93 |
+
print("| phone set: ", ph_set)
|
94 |
+
return build_phone_encoder(hparams['binary_data_dir'])
|
95 |
+
|
96 |
+
def meta_data(self, prefix):
|
97 |
+
if prefix == 'valid':
|
98 |
+
item_names = self.valid_item_names
|
99 |
+
elif prefix == 'test':
|
100 |
+
item_names = self.test_item_names
|
101 |
+
else:
|
102 |
+
item_names = self.train_item_names
|
103 |
+
for item_name in item_names:
|
104 |
+
ph = self.item2ph[item_name]
|
105 |
+
txt = self.item2txt[item_name]
|
106 |
+
tg_fn = self.item2tgfn.get(item_name)
|
107 |
+
wav_fn = self.item2wavfn[item_name]
|
108 |
+
spk_id = self.item_name2spk_id(item_name)
|
109 |
+
yield item_name, ph, txt, tg_fn, wav_fn, spk_id
|
110 |
+
|
111 |
+
def process(self):
|
112 |
+
os.makedirs(hparams['binary_data_dir'], exist_ok=True)
|
113 |
+
self.spk_map = self.build_spk_map()
|
114 |
+
print("| spk_map: ", self.spk_map)
|
115 |
+
spk_map_fn = f"{hparams['binary_data_dir']}/spk_map.json"
|
116 |
+
json.dump(self.spk_map, open(spk_map_fn, 'w'))
|
117 |
+
|
118 |
+
self.phone_encoder = self._phone_encoder()
|
119 |
+
self.process_data('valid')
|
120 |
+
self.process_data('test')
|
121 |
+
self.process_data('train')
|
122 |
+
|
123 |
+
def process_data(self, prefix):
|
124 |
+
data_dir = hparams['binary_data_dir']
|
125 |
+
args = []
|
126 |
+
builder = IndexedDatasetBuilder(f'{data_dir}/{prefix}')
|
127 |
+
lengths = []
|
128 |
+
f0s = []
|
129 |
+
total_sec = 0
|
130 |
+
if self.binarization_args['with_spk_embed']:
|
131 |
+
voice_encoder = VoiceEncoder().cuda()
|
132 |
+
|
133 |
+
meta_data = list(self.meta_data(prefix))
|
134 |
+
for m in meta_data:
|
135 |
+
args.append(list(m) + [self.phone_encoder, self.binarization_args])
|
136 |
+
num_workers = int(os.getenv('N_PROC', os.cpu_count() // 3))
|
137 |
+
for f_id, (_, item) in enumerate(
|
138 |
+
zip(tqdm(meta_data), chunked_multiprocess_run(self.process_item, args, num_workers=num_workers))):
|
139 |
+
if item is None:
|
140 |
+
continue
|
141 |
+
item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) \
|
142 |
+
if self.binarization_args['with_spk_embed'] else None
|
143 |
+
if not self.binarization_args['with_wav'] and 'wav' in item:
|
144 |
+
print("del wav")
|
145 |
+
del item['wav']
|
146 |
+
builder.add_item(item)
|
147 |
+
lengths.append(item['len'])
|
148 |
+
total_sec += item['sec']
|
149 |
+
if item.get('f0') is not None:
|
150 |
+
f0s.append(item['f0'])
|
151 |
+
builder.finalize()
|
152 |
+
np.save(f'{data_dir}/{prefix}_lengths.npy', lengths)
|
153 |
+
if len(f0s) > 0:
|
154 |
+
f0s = np.concatenate(f0s, 0)
|
155 |
+
f0s = f0s[f0s != 0]
|
156 |
+
np.save(f'{data_dir}/{prefix}_f0s_mean_std.npy', [np.mean(f0s).item(), np.std(f0s).item()])
|
157 |
+
print(f"| {prefix} total duration: {total_sec:.3f}s")
|
158 |
+
|
159 |
+
@classmethod
|
160 |
+
def process_item(cls, item_name, ph, txt, tg_fn, wav_fn, spk_id, encoder, binarization_args):
|
161 |
+
if hparams['vocoder'] in VOCODERS:
|
162 |
+
wav, mel = VOCODERS[hparams['vocoder']].wav2spec(wav_fn)
|
163 |
+
else:
|
164 |
+
wav, mel = VOCODERS[hparams['vocoder'].split('.')[-1]].wav2spec(wav_fn)
|
165 |
+
res = {
|
166 |
+
'item_name': item_name, 'txt': txt, 'ph': ph, 'mel': mel, 'wav': wav, 'wav_fn': wav_fn,
|
167 |
+
'sec': len(wav) / hparams['audio_sample_rate'], 'len': mel.shape[0], 'spk_id': spk_id
|
168 |
+
}
|
169 |
+
try:
|
170 |
+
if binarization_args['with_f0']:
|
171 |
+
cls.get_pitch(wav, mel, res)
|
172 |
+
if binarization_args['with_f0cwt']:
|
173 |
+
cls.get_f0cwt(res['f0'], res)
|
174 |
+
if binarization_args['with_txt']:
|
175 |
+
try:
|
176 |
+
phone_encoded = res['phone'] = encoder.encode(ph)
|
177 |
+
except:
|
178 |
+
traceback.print_exc()
|
179 |
+
raise BinarizationError(f"Empty phoneme")
|
180 |
+
if binarization_args['with_align']:
|
181 |
+
cls.get_align(tg_fn, ph, mel, phone_encoded, res)
|
182 |
+
except BinarizationError as e:
|
183 |
+
print(f"| Skip item ({e}). item_name: {item_name}, wav_fn: {wav_fn}")
|
184 |
+
return None
|
185 |
+
return res
|
186 |
+
|
187 |
+
@staticmethod
|
188 |
+
def get_align(tg_fn, ph, mel, phone_encoded, res):
|
189 |
+
if tg_fn is not None and os.path.exists(tg_fn):
|
190 |
+
mel2ph, dur = get_mel2ph(tg_fn, ph, mel, hparams)
|
191 |
+
else:
|
192 |
+
raise BinarizationError(f"Align not found")
|
193 |
+
if mel2ph.max() - 1 >= len(phone_encoded):
|
194 |
+
raise BinarizationError(
|
195 |
+
f"Align does not match: mel2ph.max() - 1: {mel2ph.max() - 1}, len(phone_encoded): {len(phone_encoded)}")
|
196 |
+
res['mel2ph'] = mel2ph
|
197 |
+
res['dur'] = dur
|
198 |
+
|
199 |
+
@staticmethod
|
200 |
+
def get_pitch(wav, mel, res):
|
201 |
+
f0, pitch_coarse = get_pitch(wav, mel, hparams)
|
202 |
+
if sum(f0) == 0:
|
203 |
+
raise BinarizationError("Empty f0")
|
204 |
+
res['f0'] = f0
|
205 |
+
res['pitch'] = pitch_coarse
|
206 |
+
|
207 |
+
@staticmethod
|
208 |
+
def get_f0cwt(f0, res):
|
209 |
+
from utils.cwt import get_cont_lf0, get_lf0_cwt
|
210 |
+
uv, cont_lf0_lpf = get_cont_lf0(f0)
|
211 |
+
logf0s_mean_org, logf0s_std_org = np.mean(cont_lf0_lpf), np.std(cont_lf0_lpf)
|
212 |
+
cont_lf0_lpf_norm = (cont_lf0_lpf - logf0s_mean_org) / logf0s_std_org
|
213 |
+
Wavelet_lf0, scales = get_lf0_cwt(cont_lf0_lpf_norm)
|
214 |
+
if np.any(np.isnan(Wavelet_lf0)):
|
215 |
+
raise BinarizationError("NaN CWT")
|
216 |
+
res['cwt_spec'] = Wavelet_lf0
|
217 |
+
res['cwt_scales'] = scales
|
218 |
+
res['f0_mean'] = logf0s_mean_org
|
219 |
+
res['f0_std'] = logf0s_std_org
|
220 |
+
|
221 |
+
|
222 |
+
if __name__ == "__main__":
|
223 |
+
set_hparams()
|
224 |
+
BaseBinarizer().process()
|
data_gen/tts/base_preprocess.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import re
|
5 |
+
import traceback
|
6 |
+
from collections import Counter
|
7 |
+
from functools import partial
|
8 |
+
|
9 |
+
import librosa
|
10 |
+
from tqdm import tqdm
|
11 |
+
from data_gen.tts.txt_processors.base_text_processor import get_txt_processor_cls
|
12 |
+
from data_gen.tts.wav_processors.base_processor import get_wav_processor_cls
|
13 |
+
from utils.hparams import hparams
|
14 |
+
from utils.multiprocess_utils import multiprocess_run_tqdm
|
15 |
+
from utils.os_utils import link_file, move_file, remove_file
|
16 |
+
from data_gen.tts.data_gen_utils import is_sil_phoneme, build_token_encoder
|
17 |
+
|
18 |
+
|
19 |
+
class BasePreprocessor:
|
20 |
+
def __init__(self):
|
21 |
+
self.preprocess_args = hparams['preprocess_args']
|
22 |
+
txt_processor = self.preprocess_args['txt_processor']
|
23 |
+
self.txt_processor = get_txt_processor_cls(txt_processor)
|
24 |
+
self.raw_data_dir = hparams['raw_data_dir']
|
25 |
+
self.processed_dir = hparams['processed_data_dir']
|
26 |
+
self.spk_map_fn = f"{self.processed_dir}/spk_map.json"
|
27 |
+
|
28 |
+
def meta_data(self):
|
29 |
+
"""
|
30 |
+
:return: {'item_name': Str, 'wav_fn': Str, 'txt': Str, 'spk_name': Str, 'txt_loader': None or Func}
|
31 |
+
"""
|
32 |
+
raise NotImplementedError
|
33 |
+
|
34 |
+
def process(self):
|
35 |
+
processed_dir = self.processed_dir
|
36 |
+
wav_processed_tmp_dir = f'{processed_dir}/processed_tmp'
|
37 |
+
remove_file(wav_processed_tmp_dir)
|
38 |
+
os.makedirs(wav_processed_tmp_dir, exist_ok=True)
|
39 |
+
wav_processed_dir = f'{processed_dir}/{self.wav_processed_dirname}'
|
40 |
+
remove_file(wav_processed_dir)
|
41 |
+
os.makedirs(wav_processed_dir, exist_ok=True)
|
42 |
+
|
43 |
+
meta_data = list(tqdm(self.meta_data(), desc='Load meta data'))
|
44 |
+
item_names = [d['item_name'] for d in meta_data]
|
45 |
+
assert len(item_names) == len(set(item_names)), 'Key `item_name` should be Unique.'
|
46 |
+
|
47 |
+
# preprocess data
|
48 |
+
phone_list = []
|
49 |
+
word_list = []
|
50 |
+
spk_names = set()
|
51 |
+
process_item = partial(self.preprocess_first_pass,
|
52 |
+
txt_processor=self.txt_processor,
|
53 |
+
wav_processed_dir=wav_processed_dir,
|
54 |
+
wav_processed_tmp=wav_processed_tmp_dir,
|
55 |
+
preprocess_args=self.preprocess_args)
|
56 |
+
items = []
|
57 |
+
args = [{
|
58 |
+
'item_name': item_raw['item_name'],
|
59 |
+
'txt_raw': item_raw['txt'],
|
60 |
+
'wav_fn': item_raw['wav_fn'],
|
61 |
+
'txt_loader': item_raw.get('txt_loader'),
|
62 |
+
'others': item_raw.get('others', None)
|
63 |
+
} for item_raw in meta_data]
|
64 |
+
for item_, (item_id, item) in zip(meta_data, multiprocess_run_tqdm(process_item, args, desc='Preprocess')):
|
65 |
+
if item is not None:
|
66 |
+
item_.update(item)
|
67 |
+
item = item_
|
68 |
+
if 'txt_loader' in item:
|
69 |
+
del item['txt_loader']
|
70 |
+
item['id'] = item_id
|
71 |
+
item['spk_name'] = item.get('spk_name', '<SINGLE_SPK>')
|
72 |
+
item['others'] = item.get('others', None)
|
73 |
+
phone_list += item['ph'].split(" ")
|
74 |
+
word_list += item['word'].split(" ")
|
75 |
+
spk_names.add(item['spk_name'])
|
76 |
+
items.append(item)
|
77 |
+
|
78 |
+
# add encoded tokens
|
79 |
+
ph_encoder, word_encoder = self._phone_encoder(phone_list), self._word_encoder(word_list)
|
80 |
+
spk_map = self.build_spk_map(spk_names)
|
81 |
+
args = [{
|
82 |
+
'ph': item['ph'], 'word': item['word'], 'spk_name': item['spk_name'],
|
83 |
+
'word_encoder': word_encoder, 'ph_encoder': ph_encoder, 'spk_map': spk_map
|
84 |
+
} for item in items]
|
85 |
+
for idx, item_new_kv in multiprocess_run_tqdm(self.preprocess_second_pass, args, desc='Add encoded tokens'):
|
86 |
+
items[idx].update(item_new_kv)
|
87 |
+
|
88 |
+
# build mfa data
|
89 |
+
if self.preprocess_args['use_mfa']:
|
90 |
+
mfa_dict = set()
|
91 |
+
mfa_input_dir = f'{processed_dir}/mfa_inputs'
|
92 |
+
remove_file(mfa_input_dir)
|
93 |
+
# group MFA inputs for better parallelism
|
94 |
+
mfa_groups = [i // self.preprocess_args['nsample_per_mfa_group'] for i in range(len(items))]
|
95 |
+
if self.preprocess_args['mfa_group_shuffle']:
|
96 |
+
random.seed(hparams['seed'])
|
97 |
+
random.shuffle(mfa_groups)
|
98 |
+
args = [{
|
99 |
+
'item': item, 'mfa_input_dir': mfa_input_dir,
|
100 |
+
'mfa_group': mfa_group, 'wav_processed_tmp': wav_processed_tmp_dir,
|
101 |
+
'preprocess_args': self.preprocess_args
|
102 |
+
} for item, mfa_group in zip(items, mfa_groups)]
|
103 |
+
for i, (ph_gb_word_nosil, new_wav_align_fn) in multiprocess_run_tqdm(
|
104 |
+
self.build_mfa_inputs, args, desc='Build MFA data'):
|
105 |
+
items[i]['wav_align_fn'] = new_wav_align_fn
|
106 |
+
for w in ph_gb_word_nosil.split(" "):
|
107 |
+
mfa_dict.add(f"{w} {w.replace('_', ' ')}")
|
108 |
+
mfa_dict = sorted(mfa_dict)
|
109 |
+
with open(f'{processed_dir}/mfa_dict.txt', 'w') as f:
|
110 |
+
f.writelines([f'{l}\n' for l in mfa_dict])
|
111 |
+
with open(f"{processed_dir}/{self.meta_csv_filename}.json", 'w') as f:
|
112 |
+
f.write(re.sub(r'\n\s+([\d+\]])', r'\1', json.dumps(items, ensure_ascii=False, sort_keys=False, indent=1)))
|
113 |
+
remove_file(wav_processed_tmp_dir)
|
114 |
+
|
115 |
+
@classmethod
|
116 |
+
def preprocess_first_pass(cls, item_name, txt_raw, txt_processor,
|
117 |
+
wav_fn, wav_processed_dir, wav_processed_tmp,
|
118 |
+
preprocess_args, txt_loader=None, others=None):
|
119 |
+
try:
|
120 |
+
if txt_loader is not None:
|
121 |
+
txt_raw = txt_loader(txt_raw)
|
122 |
+
ph, txt, word, ph2word, ph_gb_word = cls.txt_to_ph(txt_processor, txt_raw, preprocess_args)
|
123 |
+
wav_fn, wav_align_fn = cls.process_wav(
|
124 |
+
item_name, wav_fn,
|
125 |
+
hparams['processed_data_dir'],
|
126 |
+
wav_processed_tmp, preprocess_args)
|
127 |
+
|
128 |
+
# wav for binarization
|
129 |
+
ext = os.path.splitext(wav_fn)[1]
|
130 |
+
os.makedirs(wav_processed_dir, exist_ok=True)
|
131 |
+
new_wav_fn = f"{wav_processed_dir}/{item_name}{ext}"
|
132 |
+
move_link_func = move_file if os.path.dirname(wav_fn) == wav_processed_tmp else link_file
|
133 |
+
move_link_func(wav_fn, new_wav_fn)
|
134 |
+
return {
|
135 |
+
'txt': txt, 'txt_raw': txt_raw, 'ph': ph,
|
136 |
+
'word': word, 'ph2word': ph2word, 'ph_gb_word': ph_gb_word,
|
137 |
+
'wav_fn': new_wav_fn, 'wav_align_fn': wav_align_fn,
|
138 |
+
'others': others
|
139 |
+
}
|
140 |
+
except:
|
141 |
+
traceback.print_exc()
|
142 |
+
print(f"| Error is caught. item_name: {item_name}.")
|
143 |
+
return None
|
144 |
+
|
145 |
+
@staticmethod
|
146 |
+
def txt_to_ph(txt_processor, txt_raw, preprocess_args):
|
147 |
+
txt_struct, txt = txt_processor.process(txt_raw, preprocess_args)
|
148 |
+
ph = [p for w in txt_struct for p in w[1]]
|
149 |
+
return " ".join(ph), txt
|
150 |
+
|
151 |
+
@staticmethod
|
152 |
+
def process_wav(item_name, wav_fn, processed_dir, wav_processed_tmp, preprocess_args):
|
153 |
+
processors = [get_wav_processor_cls(v) for v in preprocess_args['wav_processors']]
|
154 |
+
processors = [k() for k in processors if k is not None]
|
155 |
+
if len(processors) >= 1:
|
156 |
+
sr_file = librosa.core.get_samplerate(wav_fn)
|
157 |
+
output_fn_for_align = None
|
158 |
+
ext = os.path.splitext(wav_fn)[1]
|
159 |
+
input_fn = f"{wav_processed_tmp}/{item_name}{ext}"
|
160 |
+
link_file(wav_fn, input_fn)
|
161 |
+
for p in processors:
|
162 |
+
outputs = p.process(input_fn, sr_file, wav_processed_tmp, processed_dir, item_name, preprocess_args)
|
163 |
+
if len(outputs) == 3:
|
164 |
+
input_fn, sr, output_fn_for_align = outputs
|
165 |
+
else:
|
166 |
+
input_fn, sr = outputs
|
167 |
+
return input_fn, output_fn_for_align
|
168 |
+
else:
|
169 |
+
return wav_fn, wav_fn
|
170 |
+
|
171 |
+
def _phone_encoder(self, ph_set):
|
172 |
+
ph_set_fn = f"{self.processed_dir}/phone_set.json"
|
173 |
+
if self.preprocess_args['reset_phone_dict'] or not os.path.exists(ph_set_fn):
|
174 |
+
ph_set = sorted(set(ph_set))
|
175 |
+
json.dump(ph_set, open(ph_set_fn, 'w'), ensure_ascii=False)
|
176 |
+
print("| Build phone set: ", ph_set)
|
177 |
+
else:
|
178 |
+
ph_set = json.load(open(ph_set_fn, 'r'))
|
179 |
+
print("| Load phone set: ", ph_set)
|
180 |
+
return build_token_encoder(ph_set_fn)
|
181 |
+
|
182 |
+
def _word_encoder(self, word_set):
|
183 |
+
word_set_fn = f"{self.processed_dir}/word_set.json"
|
184 |
+
if self.preprocess_args['reset_word_dict']:
|
185 |
+
word_set = Counter(word_set)
|
186 |
+
total_words = sum(word_set.values())
|
187 |
+
word_set = word_set.most_common(hparams['word_dict_size'])
|
188 |
+
num_unk_words = total_words - sum([x[1] for x in word_set])
|
189 |
+
word_set = ['<BOS>', '<EOS>'] + [x[0] for x in word_set]
|
190 |
+
word_set = sorted(set(word_set))
|
191 |
+
json.dump(word_set, open(word_set_fn, 'w'), ensure_ascii=False)
|
192 |
+
print(f"| Build word set. Size: {len(word_set)}, #total words: {total_words},"
|
193 |
+
f" #unk_words: {num_unk_words}, word_set[:10]:, {word_set[:10]}.")
|
194 |
+
else:
|
195 |
+
word_set = json.load(open(word_set_fn, 'r'))
|
196 |
+
print("| Load word set. Size: ", len(word_set), word_set[:10])
|
197 |
+
return build_token_encoder(word_set_fn)
|
198 |
+
|
199 |
+
@classmethod
|
200 |
+
def preprocess_second_pass(cls, word, ph, spk_name, word_encoder, ph_encoder, spk_map):
|
201 |
+
word_token = word_encoder.encode(word)
|
202 |
+
ph_token = ph_encoder.encode(ph)
|
203 |
+
spk_id = spk_map[spk_name]
|
204 |
+
return {'word_token': word_token, 'ph_token': ph_token, 'spk_id': spk_id}
|
205 |
+
|
206 |
+
def build_spk_map(self, spk_names):
|
207 |
+
spk_map = {x: i for i, x in enumerate(sorted(list(spk_names)))}
|
208 |
+
assert len(spk_map) == 0 or len(spk_map) <= hparams['num_spk'], len(spk_map)
|
209 |
+
print(f"| Number of spks: {len(spk_map)}, spk_map: {spk_map}")
|
210 |
+
json.dump(spk_map, open(self.spk_map_fn, 'w'), ensure_ascii=False)
|
211 |
+
return spk_map
|
212 |
+
|
213 |
+
@classmethod
|
214 |
+
def build_mfa_inputs(cls, item, mfa_input_dir, mfa_group, wav_processed_tmp, preprocess_args):
|
215 |
+
item_name = item['item_name']
|
216 |
+
wav_align_fn = item['wav_align_fn']
|
217 |
+
ph_gb_word = item['ph_gb_word']
|
218 |
+
ext = os.path.splitext(wav_align_fn)[1]
|
219 |
+
mfa_input_group_dir = f'{mfa_input_dir}/{mfa_group}'
|
220 |
+
os.makedirs(mfa_input_group_dir, exist_ok=True)
|
221 |
+
new_wav_align_fn = f"{mfa_input_group_dir}/{item_name}{ext}"
|
222 |
+
move_link_func = move_file if os.path.dirname(wav_align_fn) == wav_processed_tmp else link_file
|
223 |
+
move_link_func(wav_align_fn, new_wav_align_fn)
|
224 |
+
ph_gb_word_nosil = " ".join(["_".join([p for p in w.split("_") if not is_sil_phoneme(p)])
|
225 |
+
for w in ph_gb_word.split(" ") if not is_sil_phoneme(w)])
|
226 |
+
with open(f'{mfa_input_group_dir}/{item_name}.lab', 'w') as f_txt:
|
227 |
+
f_txt.write(ph_gb_word_nosil)
|
228 |
+
return ph_gb_word_nosil, new_wav_align_fn
|
229 |
+
|
230 |
+
def load_spk_map(self, base_dir):
|
231 |
+
spk_map_fn = f"{base_dir}/spk_map.json"
|
232 |
+
spk_map = json.load(open(spk_map_fn, 'r'))
|
233 |
+
return spk_map
|
234 |
+
|
235 |
+
def load_dict(self, base_dir):
|
236 |
+
ph_encoder = build_token_encoder(f'{base_dir}/phone_set.json')
|
237 |
+
return ph_encoder
|
238 |
+
|
239 |
+
@property
|
240 |
+
def meta_csv_filename(self):
|
241 |
+
return 'metadata'
|
242 |
+
|
243 |
+
@property
|
244 |
+
def wav_processed_dirname(self):
|
245 |
+
return 'wav_processed'
|
data_gen/tts/bin/binarize.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
os.environ["OMP_NUM_THREADS"] = "1"
|
4 |
+
|
5 |
+
import importlib
|
6 |
+
from utils.hparams import set_hparams, hparams
|
7 |
+
|
8 |
+
|
9 |
+
def binarize():
|
10 |
+
binarizer_cls = hparams.get("binarizer_cls", 'data_gen.tts.base_binarizer.BaseBinarizer')
|
11 |
+
pkg = ".".join(binarizer_cls.split(".")[:-1])
|
12 |
+
cls_name = binarizer_cls.split(".")[-1]
|
13 |
+
binarizer_cls = getattr(importlib.import_module(pkg), cls_name)
|
14 |
+
print("| Binarizer: ", binarizer_cls)
|
15 |
+
binarizer_cls().process()
|
16 |
+
|
17 |
+
|
18 |
+
if __name__ == '__main__':
|
19 |
+
set_hparams()
|
20 |
+
binarize()
|
data_gen/tts/data_gen_utils.py
ADDED
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
warnings.filterwarnings("ignore")
|
4 |
+
|
5 |
+
# import parselmouth
|
6 |
+
import os
|
7 |
+
import torch
|
8 |
+
from skimage.transform import resize
|
9 |
+
from utils.text_encoder import TokenTextEncoder
|
10 |
+
from utils.pitch_utils import f0_to_coarse
|
11 |
+
import struct
|
12 |
+
import webrtcvad
|
13 |
+
from scipy.ndimage.morphology import binary_dilation
|
14 |
+
import librosa
|
15 |
+
import numpy as np
|
16 |
+
from utils import audio
|
17 |
+
import pyloudnorm as pyln
|
18 |
+
import re
|
19 |
+
import json
|
20 |
+
from collections import OrderedDict
|
21 |
+
|
22 |
+
PUNCS = '!,.?;:'
|
23 |
+
|
24 |
+
int16_max = (2 ** 15) - 1
|
25 |
+
|
26 |
+
|
27 |
+
def trim_long_silences(path, sr=None, return_raw_wav=False, norm=True, vad_max_silence_length=12):
|
28 |
+
"""
|
29 |
+
Ensures that segments without voice in the waveform remain no longer than a
|
30 |
+
threshold determined by the VAD parameters in params.py.
|
31 |
+
:param wav: the raw waveform as a numpy array of floats
|
32 |
+
:param vad_max_silence_length: Maximum number of consecutive silent frames a segment can have.
|
33 |
+
:return: the same waveform with silences trimmed away (length <= original wav length)
|
34 |
+
"""
|
35 |
+
|
36 |
+
## Voice Activation Detection
|
37 |
+
# Window size of the VAD. Must be either 10, 20 or 30 milliseconds.
|
38 |
+
# This sets the granularity of the VAD. Should not need to be changed.
|
39 |
+
sampling_rate = 16000
|
40 |
+
wav_raw, sr = librosa.core.load(path, sr=sr)
|
41 |
+
|
42 |
+
if norm:
|
43 |
+
meter = pyln.Meter(sr) # create BS.1770 meter
|
44 |
+
loudness = meter.integrated_loudness(wav_raw)
|
45 |
+
wav_raw = pyln.normalize.loudness(wav_raw, loudness, -20.0)
|
46 |
+
if np.abs(wav_raw).max() > 1.0:
|
47 |
+
wav_raw = wav_raw / np.abs(wav_raw).max()
|
48 |
+
|
49 |
+
wav = librosa.resample(wav_raw, sr, sampling_rate, res_type='kaiser_best')
|
50 |
+
|
51 |
+
vad_window_length = 30 # In milliseconds
|
52 |
+
# Number of frames to average together when performing the moving average smoothing.
|
53 |
+
# The larger this value, the larger the VAD variations must be to not get smoothed out.
|
54 |
+
vad_moving_average_width = 8
|
55 |
+
|
56 |
+
# Compute the voice detection window size
|
57 |
+
samples_per_window = (vad_window_length * sampling_rate) // 1000
|
58 |
+
|
59 |
+
# Trim the end of the audio to have a multiple of the window size
|
60 |
+
wav = wav[:len(wav) - (len(wav) % samples_per_window)]
|
61 |
+
|
62 |
+
# Convert the float waveform to 16-bit mono PCM
|
63 |
+
pcm_wave = struct.pack("%dh" % len(wav), *(np.round(wav * int16_max)).astype(np.int16))
|
64 |
+
|
65 |
+
# Perform voice activation detection
|
66 |
+
voice_flags = []
|
67 |
+
vad = webrtcvad.Vad(mode=3)
|
68 |
+
for window_start in range(0, len(wav), samples_per_window):
|
69 |
+
window_end = window_start + samples_per_window
|
70 |
+
voice_flags.append(vad.is_speech(pcm_wave[window_start * 2:window_end * 2],
|
71 |
+
sample_rate=sampling_rate))
|
72 |
+
voice_flags = np.array(voice_flags)
|
73 |
+
|
74 |
+
# Smooth the voice detection with a moving average
|
75 |
+
def moving_average(array, width):
|
76 |
+
array_padded = np.concatenate((np.zeros((width - 1) // 2), array, np.zeros(width // 2)))
|
77 |
+
ret = np.cumsum(array_padded, dtype=float)
|
78 |
+
ret[width:] = ret[width:] - ret[:-width]
|
79 |
+
return ret[width - 1:] / width
|
80 |
+
|
81 |
+
audio_mask = moving_average(voice_flags, vad_moving_average_width)
|
82 |
+
audio_mask = np.round(audio_mask).astype(np.bool)
|
83 |
+
|
84 |
+
# Dilate the voiced regions
|
85 |
+
audio_mask = binary_dilation(audio_mask, np.ones(vad_max_silence_length + 1))
|
86 |
+
audio_mask = np.repeat(audio_mask, samples_per_window)
|
87 |
+
audio_mask = resize(audio_mask, (len(wav_raw),)) > 0
|
88 |
+
if return_raw_wav:
|
89 |
+
return wav_raw, audio_mask, sr
|
90 |
+
return wav_raw[audio_mask], audio_mask, sr
|
91 |
+
|
92 |
+
|
93 |
+
def process_utterance(wav_path,
|
94 |
+
fft_size=1024,
|
95 |
+
hop_size=256,
|
96 |
+
win_length=1024,
|
97 |
+
window="hann",
|
98 |
+
num_mels=80,
|
99 |
+
fmin=80,
|
100 |
+
fmax=7600,
|
101 |
+
eps=1e-6,
|
102 |
+
sample_rate=22050,
|
103 |
+
loud_norm=False,
|
104 |
+
min_level_db=-100,
|
105 |
+
return_linear=False,
|
106 |
+
trim_long_sil=False, vocoder='pwg'):
|
107 |
+
if isinstance(wav_path, str):
|
108 |
+
if trim_long_sil:
|
109 |
+
wav, _, _ = trim_long_silences(wav_path, sample_rate)
|
110 |
+
else:
|
111 |
+
wav, _ = librosa.core.load(wav_path, sr=sample_rate)
|
112 |
+
else:
|
113 |
+
wav = wav_path
|
114 |
+
|
115 |
+
if loud_norm:
|
116 |
+
meter = pyln.Meter(sample_rate) # create BS.1770 meter
|
117 |
+
loudness = meter.integrated_loudness(wav)
|
118 |
+
wav = pyln.normalize.loudness(wav, loudness, -22.0)
|
119 |
+
if np.abs(wav).max() > 1:
|
120 |
+
wav = wav / np.abs(wav).max()
|
121 |
+
|
122 |
+
# get amplitude spectrogram
|
123 |
+
x_stft = librosa.stft(wav, n_fft=fft_size, hop_length=hop_size,
|
124 |
+
win_length=win_length, window=window, pad_mode="constant")
|
125 |
+
spc = np.abs(x_stft) # (n_bins, T)
|
126 |
+
|
127 |
+
# get mel basis
|
128 |
+
fmin = 0 if fmin == -1 else fmin
|
129 |
+
fmax = sample_rate / 2 if fmax == -1 else fmax
|
130 |
+
mel_basis = librosa.filters.mel(sample_rate, fft_size, num_mels, fmin, fmax)
|
131 |
+
mel = mel_basis @ spc
|
132 |
+
|
133 |
+
if vocoder == 'pwg':
|
134 |
+
mel = np.log10(np.maximum(eps, mel)) # (n_mel_bins, T)
|
135 |
+
else:
|
136 |
+
assert False, f'"{vocoder}" is not in ["pwg"].'
|
137 |
+
|
138 |
+
l_pad, r_pad = audio.librosa_pad_lr(wav, fft_size, hop_size, 1)
|
139 |
+
wav = np.pad(wav, (l_pad, r_pad), mode='constant', constant_values=0.0)
|
140 |
+
wav = wav[:mel.shape[1] * hop_size]
|
141 |
+
|
142 |
+
if not return_linear:
|
143 |
+
return wav, mel
|
144 |
+
else:
|
145 |
+
spc = audio.amp_to_db(spc)
|
146 |
+
spc = audio.normalize(spc, {'min_level_db': min_level_db})
|
147 |
+
return wav, mel, spc
|
148 |
+
|
149 |
+
|
150 |
+
def get_pitch(wav_data, mel, hparams):
|
151 |
+
"""
|
152 |
+
|
153 |
+
:param wav_data: [T]
|
154 |
+
:param mel: [T, 80]
|
155 |
+
:param hparams:
|
156 |
+
:return:
|
157 |
+
"""
|
158 |
+
time_step = hparams['hop_size'] / hparams['audio_sample_rate'] * 1000
|
159 |
+
f0_min = 80
|
160 |
+
f0_max = 750
|
161 |
+
|
162 |
+
if hparams['hop_size'] == 128:
|
163 |
+
pad_size = 4
|
164 |
+
elif hparams['hop_size'] == 256:
|
165 |
+
pad_size = 2
|
166 |
+
else:
|
167 |
+
assert False
|
168 |
+
|
169 |
+
f0 = parselmouth.Sound(wav_data, hparams['audio_sample_rate']).to_pitch_ac(
|
170 |
+
time_step=time_step / 1000, voicing_threshold=0.6,
|
171 |
+
pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
|
172 |
+
lpad = pad_size * 2
|
173 |
+
rpad = len(mel) - len(f0) - lpad
|
174 |
+
f0 = np.pad(f0, [[lpad, rpad]], mode='constant')
|
175 |
+
# mel and f0 are extracted by 2 different libraries. we should force them to have the same length.
|
176 |
+
# Attention: we find that new version of some libraries could cause ``rpad'' to be a negetive value...
|
177 |
+
# Just to be sure, we recommend users to set up the same environments as them in requirements_auto.txt (by Anaconda)
|
178 |
+
delta_l = len(mel) - len(f0)
|
179 |
+
assert np.abs(delta_l) <= 8
|
180 |
+
if delta_l > 0:
|
181 |
+
f0 = np.concatenate([f0, [f0[-1]] * delta_l], 0)
|
182 |
+
f0 = f0[:len(mel)]
|
183 |
+
pitch_coarse = f0_to_coarse(f0)
|
184 |
+
return f0, pitch_coarse
|
185 |
+
|
186 |
+
|
187 |
+
def remove_empty_lines(text):
|
188 |
+
"""remove empty lines"""
|
189 |
+
assert (len(text) > 0)
|
190 |
+
assert (isinstance(text, list))
|
191 |
+
text = [t.strip() for t in text]
|
192 |
+
if "" in text:
|
193 |
+
text.remove("")
|
194 |
+
return text
|
195 |
+
|
196 |
+
|
197 |
+
class TextGrid(object):
|
198 |
+
def __init__(self, text):
|
199 |
+
text = remove_empty_lines(text)
|
200 |
+
self.text = text
|
201 |
+
self.line_count = 0
|
202 |
+
self._get_type()
|
203 |
+
self._get_time_intval()
|
204 |
+
self._get_size()
|
205 |
+
self.tier_list = []
|
206 |
+
self._get_item_list()
|
207 |
+
|
208 |
+
def _extract_pattern(self, pattern, inc):
|
209 |
+
"""
|
210 |
+
Parameters
|
211 |
+
----------
|
212 |
+
pattern : regex to extract pattern
|
213 |
+
inc : increment of line count after extraction
|
214 |
+
Returns
|
215 |
+
-------
|
216 |
+
group : extracted info
|
217 |
+
"""
|
218 |
+
try:
|
219 |
+
group = re.match(pattern, self.text[self.line_count]).group(1)
|
220 |
+
self.line_count += inc
|
221 |
+
except AttributeError:
|
222 |
+
raise ValueError("File format error at line %d:%s" % (self.line_count, self.text[self.line_count]))
|
223 |
+
return group
|
224 |
+
|
225 |
+
def _get_type(self):
|
226 |
+
self.file_type = self._extract_pattern(r"File type = \"(.*)\"", 2)
|
227 |
+
|
228 |
+
def _get_time_intval(self):
|
229 |
+
self.xmin = self._extract_pattern(r"xmin = (.*)", 1)
|
230 |
+
self.xmax = self._extract_pattern(r"xmax = (.*)", 2)
|
231 |
+
|
232 |
+
def _get_size(self):
|
233 |
+
self.size = int(self._extract_pattern(r"size = (.*)", 2))
|
234 |
+
|
235 |
+
def _get_item_list(self):
|
236 |
+
"""Only supports IntervalTier currently"""
|
237 |
+
for itemIdx in range(1, self.size + 1):
|
238 |
+
tier = OrderedDict()
|
239 |
+
item_list = []
|
240 |
+
tier_idx = self._extract_pattern(r"item \[(.*)\]:", 1)
|
241 |
+
tier_class = self._extract_pattern(r"class = \"(.*)\"", 1)
|
242 |
+
if tier_class != "IntervalTier":
|
243 |
+
raise NotImplementedError("Only IntervalTier class is supported currently")
|
244 |
+
tier_name = self._extract_pattern(r"name = \"(.*)\"", 1)
|
245 |
+
tier_xmin = self._extract_pattern(r"xmin = (.*)", 1)
|
246 |
+
tier_xmax = self._extract_pattern(r"xmax = (.*)", 1)
|
247 |
+
tier_size = self._extract_pattern(r"intervals: size = (.*)", 1)
|
248 |
+
for i in range(int(tier_size)):
|
249 |
+
item = OrderedDict()
|
250 |
+
item["idx"] = self._extract_pattern(r"intervals \[(.*)\]", 1)
|
251 |
+
item["xmin"] = self._extract_pattern(r"xmin = (.*)", 1)
|
252 |
+
item["xmax"] = self._extract_pattern(r"xmax = (.*)", 1)
|
253 |
+
item["text"] = self._extract_pattern(r"text = \"(.*)\"", 1)
|
254 |
+
item_list.append(item)
|
255 |
+
tier["idx"] = tier_idx
|
256 |
+
tier["class"] = tier_class
|
257 |
+
tier["name"] = tier_name
|
258 |
+
tier["xmin"] = tier_xmin
|
259 |
+
tier["xmax"] = tier_xmax
|
260 |
+
tier["size"] = tier_size
|
261 |
+
tier["items"] = item_list
|
262 |
+
self.tier_list.append(tier)
|
263 |
+
|
264 |
+
def toJson(self):
|
265 |
+
_json = OrderedDict()
|
266 |
+
_json["file_type"] = self.file_type
|
267 |
+
_json["xmin"] = self.xmin
|
268 |
+
_json["xmax"] = self.xmax
|
269 |
+
_json["size"] = self.size
|
270 |
+
_json["tiers"] = self.tier_list
|
271 |
+
return json.dumps(_json, ensure_ascii=False, indent=2)
|
272 |
+
|
273 |
+
|
274 |
+
def get_mel2ph(tg_fn, ph, mel, hparams):
|
275 |
+
ph_list = ph.split(" ")
|
276 |
+
with open(tg_fn, "r") as f:
|
277 |
+
tg = f.readlines()
|
278 |
+
tg = remove_empty_lines(tg)
|
279 |
+
tg = TextGrid(tg)
|
280 |
+
tg = json.loads(tg.toJson())
|
281 |
+
split = np.ones(len(ph_list) + 1, np.float) * -1
|
282 |
+
tg_idx = 0
|
283 |
+
ph_idx = 0
|
284 |
+
tg_align = [x for x in tg['tiers'][-1]['items']]
|
285 |
+
tg_align_ = []
|
286 |
+
for x in tg_align:
|
287 |
+
x['xmin'] = float(x['xmin'])
|
288 |
+
x['xmax'] = float(x['xmax'])
|
289 |
+
if x['text'] in ['sil', 'sp', '', 'SIL', 'PUNC']:
|
290 |
+
x['text'] = ''
|
291 |
+
if len(tg_align_) > 0 and tg_align_[-1]['text'] == '':
|
292 |
+
tg_align_[-1]['xmax'] = x['xmax']
|
293 |
+
continue
|
294 |
+
tg_align_.append(x)
|
295 |
+
tg_align = tg_align_
|
296 |
+
tg_len = len([x for x in tg_align if x['text'] != ''])
|
297 |
+
ph_len = len([x for x in ph_list if not is_sil_phoneme(x)])
|
298 |
+
assert tg_len == ph_len, (tg_len, ph_len, tg_align, ph_list, tg_fn)
|
299 |
+
while tg_idx < len(tg_align) or ph_idx < len(ph_list):
|
300 |
+
if tg_idx == len(tg_align) and is_sil_phoneme(ph_list[ph_idx]):
|
301 |
+
split[ph_idx] = 1e8
|
302 |
+
ph_idx += 1
|
303 |
+
continue
|
304 |
+
x = tg_align[tg_idx]
|
305 |
+
if x['text'] == '' and ph_idx == len(ph_list):
|
306 |
+
tg_idx += 1
|
307 |
+
continue
|
308 |
+
assert ph_idx < len(ph_list), (tg_len, ph_len, tg_align, ph_list, tg_fn)
|
309 |
+
ph = ph_list[ph_idx]
|
310 |
+
if x['text'] == '' and not is_sil_phoneme(ph):
|
311 |
+
assert False, (ph_list, tg_align)
|
312 |
+
if x['text'] != '' and is_sil_phoneme(ph):
|
313 |
+
ph_idx += 1
|
314 |
+
else:
|
315 |
+
assert (x['text'] == '' and is_sil_phoneme(ph)) \
|
316 |
+
or x['text'].lower() == ph.lower() \
|
317 |
+
or x['text'].lower() == 'sil', (x['text'], ph)
|
318 |
+
split[ph_idx] = x['xmin']
|
319 |
+
if ph_idx > 0 and split[ph_idx - 1] == -1 and is_sil_phoneme(ph_list[ph_idx - 1]):
|
320 |
+
split[ph_idx - 1] = split[ph_idx]
|
321 |
+
ph_idx += 1
|
322 |
+
tg_idx += 1
|
323 |
+
assert tg_idx == len(tg_align), (tg_idx, [x['text'] for x in tg_align])
|
324 |
+
assert ph_idx >= len(ph_list) - 1, (ph_idx, ph_list, len(ph_list), [x['text'] for x in tg_align], tg_fn)
|
325 |
+
mel2ph = np.zeros([mel.shape[0]], np.int)
|
326 |
+
split[0] = 0
|
327 |
+
split[-1] = 1e8
|
328 |
+
for i in range(len(split) - 1):
|
329 |
+
assert split[i] != -1 and split[i] <= split[i + 1], (split[:-1],)
|
330 |
+
split = [int(s * hparams['audio_sample_rate'] / hparams['hop_size'] + 0.5) for s in split]
|
331 |
+
for ph_idx in range(len(ph_list)):
|
332 |
+
mel2ph[split[ph_idx]:split[ph_idx + 1]] = ph_idx + 1
|
333 |
+
mel2ph_torch = torch.from_numpy(mel2ph)
|
334 |
+
T_t = len(ph_list)
|
335 |
+
dur = mel2ph_torch.new_zeros([T_t + 1]).scatter_add(0, mel2ph_torch, torch.ones_like(mel2ph_torch))
|
336 |
+
dur = dur[1:].numpy()
|
337 |
+
return mel2ph, dur
|
338 |
+
|
339 |
+
|
340 |
+
def build_phone_encoder(data_dir):
|
341 |
+
phone_list_file = os.path.join(data_dir, 'phone_set.json')
|
342 |
+
phone_list = json.load(open(phone_list_file))
|
343 |
+
return TokenTextEncoder(None, vocab_list=phone_list, replace_oov=',')
|
344 |
+
|
345 |
+
|
346 |
+
def is_sil_phoneme(p):
|
347 |
+
return not p[0].isalpha()
|
348 |
+
|
349 |
+
|
350 |
+
def build_token_encoder(token_list_file):
|
351 |
+
token_list = json.load(open(token_list_file))
|
352 |
+
return TokenTextEncoder(None, vocab_list=token_list, replace_oov='<UNK>')
|
data_gen/tts/txt_processors/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from . import en
|
data_gen/tts/txt_processors/base_text_processor.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from data_gen.tts.data_gen_utils import is_sil_phoneme
|
2 |
+
|
3 |
+
REGISTERED_TEXT_PROCESSORS = {}
|
4 |
+
|
5 |
+
def register_txt_processors(name):
|
6 |
+
def _f(cls):
|
7 |
+
REGISTERED_TEXT_PROCESSORS[name] = cls
|
8 |
+
return cls
|
9 |
+
|
10 |
+
return _f
|
11 |
+
|
12 |
+
|
13 |
+
def get_txt_processor_cls(name):
|
14 |
+
return REGISTERED_TEXT_PROCESSORS.get(name, None)
|
15 |
+
|
16 |
+
|
17 |
+
class BaseTxtProcessor:
|
18 |
+
@staticmethod
|
19 |
+
def sp_phonemes():
|
20 |
+
return ['|']
|
21 |
+
|
22 |
+
@classmethod
|
23 |
+
def process(cls, txt, preprocess_args):
|
24 |
+
raise NotImplementedError
|
25 |
+
|
26 |
+
@classmethod
|
27 |
+
def postprocess(cls, txt_struct, preprocess_args):
|
28 |
+
# remove sil phoneme in head and tail
|
29 |
+
while len(txt_struct) > 0 and is_sil_phoneme(txt_struct[0][0]):
|
30 |
+
txt_struct = txt_struct[1:]
|
31 |
+
while len(txt_struct) > 0 and is_sil_phoneme(txt_struct[-1][0]):
|
32 |
+
txt_struct = txt_struct[:-1]
|
33 |
+
if preprocess_args['with_phsep']:
|
34 |
+
txt_struct = cls.add_bdr(txt_struct)
|
35 |
+
if preprocess_args['add_eos_bos']:
|
36 |
+
txt_struct = [["<BOS>", ["<BOS>"]]] + txt_struct + [["<EOS>", ["<EOS>"]]]
|
37 |
+
return txt_struct
|
38 |
+
|
39 |
+
@classmethod
|
40 |
+
def add_bdr(cls, txt_struct):
|
41 |
+
txt_struct_ = []
|
42 |
+
for i, ts in enumerate(txt_struct):
|
43 |
+
txt_struct_.append(ts)
|
44 |
+
if i != len(txt_struct) - 1 and \
|
45 |
+
not is_sil_phoneme(txt_struct[i][0]) and not is_sil_phoneme(txt_struct[i + 1][0]):
|
46 |
+
txt_struct_.append(['|', ['|']])
|
47 |
+
return txt_struct_
|
data_gen/tts/txt_processors/en.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import unicodedata
|
3 |
+
|
4 |
+
from g2p_en import G2p
|
5 |
+
from g2p_en.expand import normalize_numbers
|
6 |
+
from nltk import pos_tag
|
7 |
+
from nltk.tokenize import TweetTokenizer
|
8 |
+
|
9 |
+
from data_gen.tts.txt_processors.base_text_processor import BaseTxtProcessor, register_txt_processors
|
10 |
+
from data_gen.tts.data_gen_utils import is_sil_phoneme, PUNCS
|
11 |
+
|
12 |
+
class EnG2p(G2p):
|
13 |
+
word_tokenize = TweetTokenizer().tokenize
|
14 |
+
|
15 |
+
def __call__(self, text):
|
16 |
+
# preprocessing
|
17 |
+
words = EnG2p.word_tokenize(text)
|
18 |
+
tokens = pos_tag(words) # tuples of (word, tag)
|
19 |
+
|
20 |
+
# steps
|
21 |
+
prons = []
|
22 |
+
for word, pos in tokens:
|
23 |
+
if re.search("[a-z]", word) is None:
|
24 |
+
pron = [word]
|
25 |
+
|
26 |
+
elif word in self.homograph2features: # Check homograph
|
27 |
+
pron1, pron2, pos1 = self.homograph2features[word]
|
28 |
+
if pos.startswith(pos1):
|
29 |
+
pron = pron1
|
30 |
+
else:
|
31 |
+
pron = pron2
|
32 |
+
elif word in self.cmu: # lookup CMU dict
|
33 |
+
pron = self.cmu[word][0]
|
34 |
+
else: # predict for oov
|
35 |
+
pron = self.predict(word)
|
36 |
+
|
37 |
+
prons.extend(pron)
|
38 |
+
prons.extend([" "])
|
39 |
+
|
40 |
+
return prons[:-1]
|
41 |
+
|
42 |
+
|
43 |
+
@register_txt_processors('en')
|
44 |
+
class TxtProcessor(BaseTxtProcessor):
|
45 |
+
g2p = EnG2p()
|
46 |
+
|
47 |
+
@staticmethod
|
48 |
+
def preprocess_text(text):
|
49 |
+
text = normalize_numbers(text)
|
50 |
+
text = ''.join(char for char in unicodedata.normalize('NFD', text)
|
51 |
+
if unicodedata.category(char) != 'Mn') # Strip accents
|
52 |
+
text = text.lower()
|
53 |
+
text = re.sub("[\'\"()]+", "", text)
|
54 |
+
text = re.sub("[-]+", " ", text)
|
55 |
+
text = re.sub(f"[^ a-z{PUNCS}]", "", text)
|
56 |
+
text = re.sub(f" ?([{PUNCS}]) ?", r"\1", text) # !! -> !
|
57 |
+
text = re.sub(f"([{PUNCS}])+", r"\1", text) # !! -> !
|
58 |
+
text = text.replace("i.e.", "that is")
|
59 |
+
text = text.replace("i.e.", "that is")
|
60 |
+
text = text.replace("etc.", "etc")
|
61 |
+
text = re.sub(f"([{PUNCS}])", r" \1 ", text)
|
62 |
+
text = re.sub(rf"\s+", r" ", text)
|
63 |
+
return text
|
64 |
+
|
65 |
+
@classmethod
|
66 |
+
def process(cls, txt, preprocess_args):
|
67 |
+
txt = cls.preprocess_text(txt).strip()
|
68 |
+
phs = cls.g2p(txt)
|
69 |
+
txt_struct = [[w, []] for w in txt.split(" ")]
|
70 |
+
i_word = 0
|
71 |
+
for p in phs:
|
72 |
+
if p == ' ':
|
73 |
+
i_word += 1
|
74 |
+
else:
|
75 |
+
txt_struct[i_word][1].append(p)
|
76 |
+
txt_struct = cls.postprocess(txt_struct, preprocess_args)
|
77 |
+
return txt_struct, txt
|
data_gen/tts/wav_processors/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from . import base_processor
|
2 |
+
from . import common_processors
|
data_gen/tts/wav_processors/base_processor.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
REGISTERED_WAV_PROCESSORS = {}
|
2 |
+
|
3 |
+
|
4 |
+
def register_wav_processors(name):
|
5 |
+
def _f(cls):
|
6 |
+
REGISTERED_WAV_PROCESSORS[name] = cls
|
7 |
+
return cls
|
8 |
+
|
9 |
+
return _f
|
10 |
+
|
11 |
+
|
12 |
+
def get_wav_processor_cls(name):
|
13 |
+
return REGISTERED_WAV_PROCESSORS.get(name, None)
|
14 |
+
|
15 |
+
|
16 |
+
class BaseWavProcessor:
|
17 |
+
@property
|
18 |
+
def name(self):
|
19 |
+
raise NotImplementedError
|
20 |
+
|
21 |
+
def output_fn(self, input_fn):
|
22 |
+
return f'{input_fn[:-4]}_{self.name}.wav'
|
23 |
+
|
24 |
+
def process(self, input_fn, sr, tmp_dir, processed_dir, item_name, preprocess_args):
|
25 |
+
raise NotImplementedError
|
data_gen/tts/wav_processors/common_processors.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import subprocess
|
3 |
+
import librosa
|
4 |
+
import numpy as np
|
5 |
+
from data_gen.tts.wav_processors.base_processor import BaseWavProcessor, register_wav_processors
|
6 |
+
from data_gen.tts.data_gen_utils import trim_long_silences
|
7 |
+
from utils.audio import save_wav
|
8 |
+
from utils.rnnoise import rnnoise
|
9 |
+
from utils.hparams import hparams
|
10 |
+
|
11 |
+
|
12 |
+
@register_wav_processors(name='sox_to_wav')
|
13 |
+
class ConvertToWavProcessor(BaseWavProcessor):
|
14 |
+
@property
|
15 |
+
def name(self):
|
16 |
+
return 'ToWav'
|
17 |
+
|
18 |
+
def process(self, input_fn, sr, tmp_dir, processed_dir, item_name, preprocess_args):
|
19 |
+
if input_fn[-4:] == '.wav':
|
20 |
+
return input_fn, sr
|
21 |
+
else:
|
22 |
+
output_fn = self.output_fn(input_fn)
|
23 |
+
subprocess.check_call(f'sox -v 0.95 "{input_fn}" -t wav "{output_fn}"', shell=True)
|
24 |
+
return output_fn, sr
|
25 |
+
|
26 |
+
|
27 |
+
@register_wav_processors(name='sox_resample')
|
28 |
+
class ResampleProcessor(BaseWavProcessor):
|
29 |
+
@property
|
30 |
+
def name(self):
|
31 |
+
return 'Resample'
|
32 |
+
|
33 |
+
def process(self, input_fn, sr, tmp_dir, processed_dir, item_name, preprocess_args):
|
34 |
+
output_fn = self.output_fn(input_fn)
|
35 |
+
sr_file = librosa.core.get_samplerate(input_fn)
|
36 |
+
if sr != sr_file:
|
37 |
+
subprocess.check_call(f'sox -v 0.95 "{input_fn}" -r{sr} "{output_fn}"', shell=True)
|
38 |
+
y, _ = librosa.core.load(input_fn, sr=sr)
|
39 |
+
y, _ = librosa.effects.trim(y)
|
40 |
+
save_wav(y, output_fn, sr)
|
41 |
+
return output_fn, sr
|
42 |
+
else:
|
43 |
+
return input_fn, sr
|
44 |
+
|
45 |
+
|
46 |
+
@register_wav_processors(name='trim_sil')
|
47 |
+
class TrimSILProcessor(BaseWavProcessor):
|
48 |
+
@property
|
49 |
+
def name(self):
|
50 |
+
return 'TrimSIL'
|
51 |
+
|
52 |
+
def process(self, input_fn, sr, tmp_dir, processed_dir, item_name, preprocess_args):
|
53 |
+
output_fn = self.output_fn(input_fn)
|
54 |
+
y, _ = librosa.core.load(input_fn, sr=sr)
|
55 |
+
y, _ = librosa.effects.trim(y)
|
56 |
+
save_wav(y, output_fn, sr)
|
57 |
+
return output_fn
|
58 |
+
|
59 |
+
|
60 |
+
@register_wav_processors(name='trim_all_sil')
|
61 |
+
class TrimAllSILProcessor(BaseWavProcessor):
|
62 |
+
@property
|
63 |
+
def name(self):
|
64 |
+
return 'TrimSIL'
|
65 |
+
|
66 |
+
def process(self, input_fn, sr, tmp_dir, processed_dir, item_name, preprocess_args):
|
67 |
+
output_fn = self.output_fn(input_fn)
|
68 |
+
y, audio_mask, _ = trim_long_silences(
|
69 |
+
input_fn, vad_max_silence_length=preprocess_args.get('vad_max_silence_length', 12))
|
70 |
+
save_wav(y, output_fn, sr)
|
71 |
+
if preprocess_args['save_sil_mask']:
|
72 |
+
os.makedirs(f'{processed_dir}/sil_mask', exist_ok=True)
|
73 |
+
np.save(f'{processed_dir}/sil_mask/{item_name}.npy', audio_mask)
|
74 |
+
return output_fn, sr
|
75 |
+
|
76 |
+
|
77 |
+
@register_wav_processors(name='denoise')
|
78 |
+
class DenoiseProcessor(BaseWavProcessor):
|
79 |
+
@property
|
80 |
+
def name(self):
|
81 |
+
return 'Denoise'
|
82 |
+
|
83 |
+
def process(self, input_fn, sr, tmp_dir, processed_dir, item_name, preprocess_args):
|
84 |
+
output_fn = self.output_fn(input_fn)
|
85 |
+
rnnoise(input_fn, output_fn, out_sample_rate=sr)
|
86 |
+
return output_fn, sr
|
egs/datasets/audio/libritts/base_text2mel.yaml
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
raw_data_dir: 'data/raw/LibriTTS'
|
2 |
+
processed_data_dir: 'data/processed/libritts'
|
3 |
+
binary_data_dir: 'data/binary/libritts'
|
4 |
+
pre_align_cls: egs.datasets.audio.libritts.pre_align.LibrittsPreAlign
|
5 |
+
binarization_args:
|
6 |
+
shuffle: true
|
7 |
+
use_spk_id: true
|
8 |
+
test_num: 200
|
9 |
+
num_spk: 2320
|
10 |
+
pitch_type: frame
|
11 |
+
min_frames: 128
|
12 |
+
num_test_samples: 30
|
13 |
+
mel_loss: "ssim:0.5|l1:0.5"
|
14 |
+
vocoder_ckpt: ''
|
egs/datasets/audio/libritts/fs2.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
base_config:
|
2 |
+
- egs/egs_bases/tts/fs2.yaml
|
3 |
+
- ./base_text2mel.yaml
|
egs/datasets/audio/libritts/pre_align.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from data_gen.tts.base_pre_align import BasePreAlign
|
4 |
+
import glob
|
5 |
+
|
6 |
+
|
7 |
+
class LibrittsPreAlign(BasePreAlign):
|
8 |
+
def meta_data(self):
|
9 |
+
wav_fns = sorted(glob.glob(f'{self.raw_data_dir}/*/*/*/*.wav'))
|
10 |
+
for wav_fn in wav_fns:
|
11 |
+
item_name = os.path.basename(wav_fn)[:-4]
|
12 |
+
txt_fn = f'{wav_fn[:-4]}.normalized.txt'
|
13 |
+
spk = item_name.split("_")[0]
|
14 |
+
yield item_name, wav_fn, (self.load_txt, txt_fn), spk
|
15 |
+
|
16 |
+
|
17 |
+
if __name__ == "__main__":
|
18 |
+
LibrittsPreAlign().process()
|
egs/datasets/audio/libritts/pwg.yaml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_config: egs/egs_bases/tts/vocoder/pwg.yaml
|
2 |
+
raw_data_dir: 'data/raw/LibriTTS'
|
3 |
+
processed_data_dir: 'data/processed/libritts'
|
4 |
+
binary_data_dir: 'data/binary/libritts_wav'
|
5 |
+
generator_params:
|
6 |
+
kernel_size: 5
|
7 |
+
num_spk: 400
|
8 |
+
max_samples: 20480
|
egs/datasets/audio/lj/base_mel2wav.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
raw_data_dir: 'data/raw/LJSpeech-1.1'
|
2 |
+
processed_data_dir: 'data/processed/ljspeech'
|
3 |
+
binary_data_dir: 'data/binary/ljspeech_wav'
|
4 |
+
binarization_args:
|
5 |
+
with_spk_embed: false
|
egs/datasets/audio/lj/pre_align.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from data_gen.tts.base_preprocess import BasePreprocessor
|
2 |
+
|
3 |
+
|
4 |
+
class LJPreAlign(BasePreprocessor):
|
5 |
+
def meta_data(self):
|
6 |
+
for l in open(f'{self.raw_data_dir}/metadata.csv').readlines():
|
7 |
+
item_name, _, txt = l.strip().split("|")
|
8 |
+
wav_fn = f"{self.raw_data_dir}/wavs/{item_name}.wav"
|
9 |
+
yield item_name, wav_fn, txt, 'SPK1'
|
10 |
+
|
11 |
+
|
12 |
+
if __name__ == "__main__":
|
13 |
+
LJPreAlign().process()
|
egs/datasets/audio/lj/pwg.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
base_config:
|
2 |
+
- egs/egs_bases/tts/vocoder/pwg.yaml
|
3 |
+
- ./base_mel2wav.yaml
|
egs/datasets/audio/vctk/base_mel2wav.yaml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
raw_data_dir: 'data/raw/VCTK-Corpus'
|
2 |
+
processed_data_dir: 'data/processed/vctk'
|
3 |
+
binary_data_dir: 'data/binary/vctk_wav'
|
egs/datasets/audio/vctk/fs2.yaml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_config:
|
2 |
+
- egs/egs_bases/tts/fs2.yaml
|
3 |
+
raw_data_dir: 'data/raw/VCTK-Corpus'
|
4 |
+
processed_data_dir: 'data/processed/vctk'
|
5 |
+
binary_data_dir: 'data/binary/vctk'
|
6 |
+
pre_align_cls: egs.datasets.audio.vctk.pre_align.VCTKPreAlign
|
7 |
+
use_spk_id: true
|
8 |
+
test_num: 200
|
9 |
+
num_spk: 400
|
10 |
+
binarization_args:
|
11 |
+
shuffle: true
|
12 |
+
trim_eos_bos: true
|
egs/datasets/audio/vctk/pre_align.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
from data_gen.tts.base_pre_align import BasePreAlign
|
4 |
+
import glob
|
5 |
+
|
6 |
+
|
7 |
+
class VCTKPreAlign(BasePreAlign):
|
8 |
+
def meta_data(self):
|
9 |
+
wav_fns = glob.glob(f'{self.raw_data_dir}/wav48/*/*.wav')
|
10 |
+
for wav_fn in wav_fns:
|
11 |
+
item_name = os.path.basename(wav_fn)[:-4]
|
12 |
+
spk = item_name.split("_")[0]
|
13 |
+
txt_fn = wav_fn.split("/")
|
14 |
+
txt_fn[-1] = f'{item_name}.txt'
|
15 |
+
txt_fn[-3] = f'txt'
|
16 |
+
txt_fn = "/".join(txt_fn)
|
17 |
+
if os.path.exists(txt_fn) and os.path.exists(wav_fn):
|
18 |
+
yield item_name, wav_fn, (self.load_txt, txt_fn), spk
|
19 |
+
|
20 |
+
|
21 |
+
if __name__ == "__main__":
|
22 |
+
VCTKPreAlign().process()
|
egs/datasets/audio/vctk/pwg.yaml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_config:
|
2 |
+
- egs/egs_bases/tts/vocoder/pwg.yaml
|
3 |
+
- ./base_mel2wav.yaml
|
4 |
+
|
5 |
+
num_spk: 400
|
6 |
+
max_samples: 20480
|
egs/egs_bases/config_base.yaml
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# task
|
2 |
+
binary_data_dir: ''
|
3 |
+
work_dir: '' # experiment directory.
|
4 |
+
infer: false # inference
|
5 |
+
amp: false
|
6 |
+
seed: 1234
|
7 |
+
debug: false
|
8 |
+
save_codes: []
|
9 |
+
# - configs
|
10 |
+
# - modules
|
11 |
+
# - tasks
|
12 |
+
# - utils
|
13 |
+
# - usr
|
14 |
+
|
15 |
+
#############
|
16 |
+
# dataset
|
17 |
+
#############
|
18 |
+
ds_workers: 1
|
19 |
+
test_num: 100
|
20 |
+
endless_ds: false
|
21 |
+
sort_by_len: true
|
22 |
+
|
23 |
+
#########
|
24 |
+
# train and eval
|
25 |
+
#########
|
26 |
+
print_nan_grads: false
|
27 |
+
load_ckpt: ''
|
28 |
+
save_best: true
|
29 |
+
num_ckpt_keep: 3
|
30 |
+
clip_grad_norm: 0
|
31 |
+
accumulate_grad_batches: 1
|
32 |
+
tb_log_interval: 100
|
33 |
+
num_sanity_val_steps: 5 # steps of validation at the beginning
|
34 |
+
check_val_every_n_epoch: 10
|
35 |
+
val_check_interval: 2000
|
36 |
+
valid_monitor_key: 'val_loss'
|
37 |
+
valid_monitor_mode: 'min'
|
38 |
+
max_epochs: 1000
|
39 |
+
max_updates: 1000000
|
40 |
+
max_tokens: 31250
|
41 |
+
max_sentences: 100000
|
42 |
+
max_valid_tokens: -1
|
43 |
+
max_valid_sentences: -1
|
44 |
+
test_input_dir: ''
|
45 |
+
resume_from_checkpoint: 0
|
46 |
+
rename_tmux: true
|
egs/egs_bases/tts/base.yaml
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# task
|
2 |
+
base_config: ../config_base.yaml
|
3 |
+
task_cls: ''
|
4 |
+
#############
|
5 |
+
# dataset
|
6 |
+
#############
|
7 |
+
raw_data_dir: ''
|
8 |
+
processed_data_dir: ''
|
9 |
+
binary_data_dir: ''
|
10 |
+
dict_dir: ''
|
11 |
+
pre_align_cls: ''
|
12 |
+
binarizer_cls: data_gen.tts.base_binarizer.BaseBinarizer
|
13 |
+
pre_align_args:
|
14 |
+
txt_processor: en
|
15 |
+
use_tone: true # for ZH
|
16 |
+
sox_resample: false
|
17 |
+
sox_to_wav: false
|
18 |
+
allow_no_txt: false
|
19 |
+
trim_sil: false
|
20 |
+
denoise: false
|
21 |
+
binarization_args:
|
22 |
+
shuffle: false
|
23 |
+
with_txt: true
|
24 |
+
with_wav: false
|
25 |
+
with_align: true
|
26 |
+
with_spk_embed: false
|
27 |
+
with_spk_id: true
|
28 |
+
with_f0: true
|
29 |
+
with_f0cwt: false
|
30 |
+
with_linear: false
|
31 |
+
with_word: true
|
32 |
+
trim_sil: false
|
33 |
+
trim_eos_bos: false
|
34 |
+
reset_phone_dict: true
|
35 |
+
reset_word_dict: true
|
36 |
+
word_size: 30000
|
37 |
+
pitch_extractor: parselmouth
|
38 |
+
|
39 |
+
loud_norm: false
|
40 |
+
endless_ds: true
|
41 |
+
|
42 |
+
test_num: 100
|
43 |
+
min_frames: 0
|
44 |
+
max_frames: 1548
|
45 |
+
frames_multiple: 1
|
46 |
+
max_input_tokens: 1550
|
47 |
+
audio_num_mel_bins: 80
|
48 |
+
audio_sample_rate: 22050
|
49 |
+
hop_size: 256 # For 22050Hz, 275 ~= 12.5 ms (0.0125 * sample_rate)
|
50 |
+
win_size: 1024 # For 22050Hz, 1100 ~= 50 ms (If None, win_size: fft_size) (0.05 * sample_rate)
|
51 |
+
fmin: 80 # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To test depending on dataset. Pitch info: male~[65, 260], female~[100, 525])
|
52 |
+
fmax: 7600 # To be increased/reduced depending on data.
|
53 |
+
fft_size: 1024 # Extra window size is filled with 0 paddings to match this parameter
|
54 |
+
min_level_db: -100
|
55 |
+
ref_level_db: 20
|
56 |
+
griffin_lim_iters: 60
|
57 |
+
num_spk: 1
|
58 |
+
mel_vmin: -6
|
59 |
+
mel_vmax: 1.5
|
60 |
+
ds_workers: 1
|
61 |
+
|
62 |
+
#########
|
63 |
+
# model
|
64 |
+
#########
|
65 |
+
dropout: 0.1
|
66 |
+
enc_layers: 4
|
67 |
+
dec_layers: 4
|
68 |
+
hidden_size: 256
|
69 |
+
num_heads: 2
|
70 |
+
enc_ffn_kernel_size: 9
|
71 |
+
dec_ffn_kernel_size: 9
|
72 |
+
ffn_act: gelu
|
73 |
+
ffn_padding: 'SAME'
|
74 |
+
use_spk_id: false
|
75 |
+
use_split_spk_id: false
|
76 |
+
use_spk_embed: false
|
77 |
+
|
78 |
+
|
79 |
+
###########
|
80 |
+
# optimization
|
81 |
+
###########
|
82 |
+
lr: 2.0
|
83 |
+
scheduler: rsqrt # rsqrt|none
|
84 |
+
warmup_updates: 8000
|
85 |
+
optimizer_adam_beta1: 0.9
|
86 |
+
optimizer_adam_beta2: 0.98
|
87 |
+
weight_decay: 0
|
88 |
+
clip_grad_norm: 1
|
89 |
+
clip_grad_value: 0
|
90 |
+
|
91 |
+
|
92 |
+
###########
|
93 |
+
# train and eval
|
94 |
+
###########
|
95 |
+
max_tokens: 30000
|
96 |
+
max_sentences: 100000
|
97 |
+
max_valid_sentences: 1
|
98 |
+
max_valid_tokens: 60000
|
99 |
+
valid_infer_interval: 10000
|
100 |
+
train_set_name: 'train'
|
101 |
+
train_sets: ''
|
102 |
+
valid_set_name: 'valid'
|
103 |
+
test_set_name: 'test'
|
104 |
+
num_test_samples: 0
|
105 |
+
num_valid_plots: 10
|
106 |
+
test_ids: [ ]
|
107 |
+
vocoder_denoise_c: 0.0
|
108 |
+
profile_infer: false
|
109 |
+
out_wav_norm: false
|
110 |
+
save_gt: true
|
111 |
+
save_f0: false
|
112 |
+
gen_dir_name: ''
|
egs/egs_bases/tts/fs2.yaml
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_config: ./base.yaml
|
2 |
+
task_cls: tasks.tts.fs2.FastSpeech2Task
|
3 |
+
|
4 |
+
# model
|
5 |
+
hidden_size: 256
|
6 |
+
dropout: 0.1
|
7 |
+
encoder_type: fft # rel_fft|fft|tacotron|tacotron2|conformer
|
8 |
+
decoder_type: fft # fft|rnn|conv|conformer|wn
|
9 |
+
|
10 |
+
# rnn enc/dec
|
11 |
+
encoder_K: 8
|
12 |
+
decoder_rnn_dim: 0 # for rnn decoder, 0 -> hidden_size * 2
|
13 |
+
|
14 |
+
# fft enc/dec
|
15 |
+
use_pos_embed: true
|
16 |
+
dec_num_heads: 2
|
17 |
+
dec_layers: 4
|
18 |
+
ffn_hidden_size: 1024
|
19 |
+
enc_ffn_kernel_size: 9
|
20 |
+
dec_ffn_kernel_size: 9
|
21 |
+
|
22 |
+
# conv enc/dec
|
23 |
+
enc_dec_norm: ln
|
24 |
+
conv_use_pos: false
|
25 |
+
layers_in_block: 2
|
26 |
+
enc_dilations: [ 1, 1, 1, 1 ]
|
27 |
+
enc_kernel_size: 5
|
28 |
+
dec_dilations: [ 1, 1, 1, 1 ] # for conv decoder
|
29 |
+
dec_kernel_size: 5
|
30 |
+
dur_loss: mse # huber|mol
|
31 |
+
|
32 |
+
# duration
|
33 |
+
predictor_hidden: -1
|
34 |
+
predictor_kernel: 5
|
35 |
+
predictor_layers: 2
|
36 |
+
dur_predictor_kernel: 3
|
37 |
+
dur_predictor_layers: 2
|
38 |
+
predictor_dropout: 0.5
|
39 |
+
|
40 |
+
# pitch and energy
|
41 |
+
pitch_norm: standard # standard|log
|
42 |
+
use_pitch_embed: true
|
43 |
+
pitch_type: frame # frame|ph|cwt
|
44 |
+
use_uv: true
|
45 |
+
cwt_hidden_size: 128
|
46 |
+
cwt_layers: 2
|
47 |
+
cwt_loss: l1
|
48 |
+
cwt_add_f0_loss: false
|
49 |
+
cwt_std_scale: 0.8
|
50 |
+
|
51 |
+
pitch_ar: false
|
52 |
+
pitch_embed_type: 0
|
53 |
+
pitch_loss: 'l1' # l1|l2|ssim
|
54 |
+
pitch_ssim_win: 11
|
55 |
+
use_energy_embed: false
|
56 |
+
|
57 |
+
# reference encoder and speaker embedding
|
58 |
+
use_ref_enc: false
|
59 |
+
use_var_enc: false
|
60 |
+
lambda_commit: 0.25
|
61 |
+
var_enc_vq_codes: 64
|
62 |
+
ref_norm_layer: bn
|
63 |
+
dec_inp_add_noise: false
|
64 |
+
sil_add_noise: false
|
65 |
+
ref_hidden_stride_kernel:
|
66 |
+
- 0,3,5 # conv_hidden_size, conv_stride, conv_kernel_size. conv_hidden_size=0: use hidden_size
|
67 |
+
- 0,3,5
|
68 |
+
- 0,2,5
|
69 |
+
- 0,2,5
|
70 |
+
- 0,2,5
|
71 |
+
pitch_enc_hidden_stride_kernel:
|
72 |
+
- 0,2,5 # conv_hidden_size, conv_stride, conv_kernel_size. conv_hidden_size=0: use hidden_size
|
73 |
+
- 0,2,5
|
74 |
+
- 0,2,5
|
75 |
+
dur_enc_hidden_stride_kernel:
|
76 |
+
- 0,2,3 # conv_hidden_size, conv_stride, conv_kernel_size. conv_hidden_size=0: use hidden_size
|
77 |
+
- 0,2,3
|
78 |
+
- 0,1,3
|
79 |
+
|
80 |
+
# mel
|
81 |
+
mel_loss: l1:0.5|ssim:0.5 # l1|l2|gdl|ssim or l1:0.5|ssim:0.5
|
82 |
+
|
83 |
+
# loss lambda
|
84 |
+
lambda_f0: 1.0
|
85 |
+
lambda_uv: 1.0
|
86 |
+
lambda_energy: 0.1
|
87 |
+
lambda_ph_dur: 0.1
|
88 |
+
lambda_sent_dur: 1.0
|
89 |
+
lambda_word_dur: 1.0
|
90 |
+
predictor_grad: 0.1
|
91 |
+
|
92 |
+
# train and eval
|
93 |
+
pretrain_fs_ckpt: ''
|
94 |
+
warmup_updates: 2000
|
95 |
+
max_tokens: 32000
|
96 |
+
max_sentences: 100000
|
97 |
+
max_valid_sentences: 1
|
98 |
+
max_updates: 120000
|
99 |
+
use_gt_dur: false
|
100 |
+
use_gt_f0: false
|
101 |
+
ds_workers: 2
|
102 |
+
lr: 1.0
|
egs/egs_bases/tts/vocoder/base.yaml
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_config: ../base.yaml
|
2 |
+
binarization_args:
|
3 |
+
with_wav: true
|
4 |
+
with_spk_embed: false
|
5 |
+
with_align: false
|
6 |
+
with_word: false
|
7 |
+
with_txt: false
|
8 |
+
|
9 |
+
###########
|
10 |
+
# train and eval
|
11 |
+
###########
|
12 |
+
max_samples: 25600
|
13 |
+
max_sentences: 5
|
14 |
+
max_valid_sentences: 1
|
15 |
+
max_updates: 1000000
|
16 |
+
val_check_interval: 2000
|
17 |
+
|
18 |
+
###########################################################
|
19 |
+
# FEATURE EXTRACTION SETTING #
|
20 |
+
###########################################################
|
21 |
+
fft_size: 1024 # FFT size.
|
22 |
+
hop_size: 256 # Hop size.
|
23 |
+
win_length: null # Window length.
|
24 |
+
# If set to null, it will be the same as fft_size.
|
25 |
+
window: "hann" # Window function.
|
26 |
+
num_mels: 80 # Number of mel basis.
|
27 |
+
fmin: 80 # Minimum freq in mel basis calculation.
|
28 |
+
fmax: 7600 # Maximum frequency in mel basis calculation.
|
29 |
+
aux_context_window: 0 # Context window size for auxiliary feature.
|
30 |
+
use_pitch_embed: false
|
31 |
+
|
32 |
+
generator_grad_norm: 10 # Generator's gradient norm.
|
33 |
+
discriminator_grad_norm: 1 # Discriminator's gradient norm.
|
34 |
+
disc_start_steps: 40000 # Number of steps to start to train discriminator.
|
egs/egs_bases/tts/vocoder/pwg.yaml
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_config: ./base.yaml
|
2 |
+
task_cls: tasks.vocoder.pwg.PwgTask
|
3 |
+
|
4 |
+
aux_context_window: 2 # Context window size for auxiliary feature.
|
5 |
+
use_pitch_embed: false
|
6 |
+
###########################################################
|
7 |
+
# GENERATOR NETWORK ARCHITECTURE SETTING #
|
8 |
+
###########################################################
|
9 |
+
generator_params:
|
10 |
+
in_channels: 1 # Number of input channels.
|
11 |
+
out_channels: 1 # Number of output channels.
|
12 |
+
kernel_size: 3 # Kernel size of dilated convolution.
|
13 |
+
layers: 30 # Number of residual block layers.
|
14 |
+
stacks: 3 # Number of stacks i.e., dilation cycles.
|
15 |
+
residual_channels: 64 # Number of channels in residual conv.
|
16 |
+
gate_channels: 128 # Number of channels in gated conv.
|
17 |
+
skip_channels: 64 # Number of channels in skip conv.
|
18 |
+
aux_channels: 80 # Number of channels for auxiliary feature conv.
|
19 |
+
# Must be the same as num_mels.
|
20 |
+
# If set to 2, previous 2 and future 2 frames will be considered.
|
21 |
+
dropout: 0.0 # Dropout rate. 0.0 means no dropout applied.
|
22 |
+
use_weight_norm: true # Whether to use weight norm.
|
23 |
+
# If set to true, it will be applied to all of the conv layers.
|
24 |
+
upsample_net: "ConvInUpsampleNetwork" # Upsampling network architecture.
|
25 |
+
upsample_params: # Upsampling network parameters.
|
26 |
+
upsample_scales: [4, 4, 4, 4] # Upsampling scales. Prodcut of these must be the same as hop size.
|
27 |
+
use_pitch_embed: false
|
28 |
+
use_nsf: false
|
29 |
+
###########################################################
|
30 |
+
# DISCRIMINATOR NETWORK ARCHITECTURE SETTING #
|
31 |
+
###########################################################
|
32 |
+
discriminator_params:
|
33 |
+
in_channels: 1 # Number of input channels.
|
34 |
+
out_channels: 1 # Number of output channels.
|
35 |
+
kernel_size: 3 # Number of output channels.
|
36 |
+
layers: 10 # Number of conv layers.
|
37 |
+
conv_channels: 64 # Number of chnn layers.
|
38 |
+
bias: true # Whether to use bias parameter in conv.
|
39 |
+
use_weight_norm: true # Whether to use weight norm.
|
40 |
+
# If set to true, it will be applied to all of the conv layers.
|
41 |
+
nonlinear_activation: "LeakyReLU" # Nonlinear function after each conv.
|
42 |
+
nonlinear_activation_params: # Nonlinear function parameters
|
43 |
+
negative_slope: 0.2 # Alpha in LeakyReLU.
|
44 |
+
rerun_gen: true
|
45 |
+
|
46 |
+
###########################################################
|
47 |
+
# STFT LOSS SETTING #
|
48 |
+
###########################################################
|
49 |
+
stft_loss_params:
|
50 |
+
fft_sizes: [1024, 2048, 512] # List of FFT size for STFT-based loss.
|
51 |
+
hop_sizes: [120, 240, 50] # List of hop size for STFT-based loss
|
52 |
+
win_lengths: [600, 1200, 240] # List of window length for STFT-based loss.
|
53 |
+
window: "hann_window" # Window function for STFT-based loss
|
54 |
+
use_mel_loss: false
|
55 |
+
|
56 |
+
###########################################################
|
57 |
+
# ADVERSARIAL LOSS SETTING #
|
58 |
+
###########################################################
|
59 |
+
lambda_adv: 4.0 # Loss balancing coefficient.
|
60 |
+
|
61 |
+
###########################################################
|
62 |
+
# OPTIMIZER & SCHEDULER SETTING #
|
63 |
+
###########################################################
|
64 |
+
generator_optimizer_params:
|
65 |
+
lr: 0.0001 # Generator's learning rate.
|
66 |
+
eps: 1.0e-6 # Generator's epsilon.
|
67 |
+
weight_decay: 0.0 # Generator's weight decay coefficient.
|
68 |
+
generator_scheduler_params:
|
69 |
+
step_size: 200000 # Generator's scheduler step size.
|
70 |
+
gamma: 0.5 # Generator's scheduler gamma.
|
71 |
+
# At each step size, lr will be multiplied by this parameter.
|
72 |
+
generator_grad_norm: 10 # Generator's gradient norm.
|
73 |
+
discriminator_optimizer_params:
|
74 |
+
lr: 0.00005 # Discriminator's learning rate.
|
75 |
+
eps: 1.0e-6 # Discriminator's epsilon.
|
76 |
+
weight_decay: 0.0 # Discriminator's weight decay coefficient.
|
77 |
+
discriminator_scheduler_params:
|
78 |
+
step_size: 200000 # Discriminator's scheduler step size.
|
79 |
+
gamma: 0.5 # Discriminator's scheduler gamma.
|
80 |
+
# At each step size, lr will be multiplied by this parameter.
|
81 |
+
discriminator_grad_norm: 1 # Discriminator's gradient norm.
|
82 |
+
disc_start_steps: 40000 # Number of steps to start to train discriminator.
|
inference/ProDiff.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from inference.base_tts_infer import BaseTTSInfer
|
3 |
+
from utils.ckpt_utils import load_ckpt, get_last_checkpoint
|
4 |
+
from utils.hparams import hparams
|
5 |
+
from modules.ProDiff.model.ProDiff import GaussianDiffusion
|
6 |
+
from usr.diff.net import DiffNet
|
7 |
+
import os
|
8 |
+
import numpy as np
|
9 |
+
from functools import partial
|
10 |
+
|
11 |
+
class ProDiffInfer(BaseTTSInfer):
|
12 |
+
def build_model(self):
|
13 |
+
f0_stats_fn = f'{hparams["binary_data_dir"]}/train_f0s_mean_std.npy'
|
14 |
+
if os.path.exists(f0_stats_fn):
|
15 |
+
hparams['f0_mean'], hparams['f0_std'] = np.load(f0_stats_fn)
|
16 |
+
hparams['f0_mean'] = float(hparams['f0_mean'])
|
17 |
+
hparams['f0_std'] = float(hparams['f0_std'])
|
18 |
+
model = GaussianDiffusion(
|
19 |
+
phone_encoder=self.ph_encoder,
|
20 |
+
out_dims=80, denoise_fn=DiffNet(hparams['audio_num_mel_bins']),
|
21 |
+
timesteps=hparams['timesteps'],
|
22 |
+
loss_type=hparams['diff_loss_type'],
|
23 |
+
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'],
|
24 |
+
)
|
25 |
+
checkpoint = torch.load(hparams['teacher_ckpt'], map_location='cpu')["state_dict"]['model']
|
26 |
+
teacher_timesteps = int(checkpoint['timesteps'].item())
|
27 |
+
teacher_timescales = int(checkpoint['timescale'].item())
|
28 |
+
student_timesteps = teacher_timesteps // 2
|
29 |
+
student_timescales = teacher_timescales * 2
|
30 |
+
to_torch = partial(torch.tensor, dtype=torch.float32)
|
31 |
+
model.register_buffer('timesteps', to_torch(student_timesteps)) # beta
|
32 |
+
model.register_buffer('timescale', to_torch(student_timescales)) # beta
|
33 |
+
model.eval()
|
34 |
+
load_ckpt(model, hparams['work_dir'], 'model')
|
35 |
+
return model
|
36 |
+
|
37 |
+
def forward_model(self, inp):
|
38 |
+
sample = self.input_to_batch(inp)
|
39 |
+
txt_tokens = sample['txt_tokens'] # [B, T_t]
|
40 |
+
with torch.no_grad():
|
41 |
+
output = self.model(txt_tokens, infer=True)
|
42 |
+
mel_out = output['mel_out']
|
43 |
+
wav_out = self.run_vocoder(mel_out)
|
44 |
+
wav_out = wav_out.squeeze().cpu().numpy()
|
45 |
+
return wav_out
|
46 |
+
|
47 |
+
|
48 |
+
if __name__ == '__main__':
|
49 |
+
ProDiffInfer.example_run()
|
inference/ProDiff_Teacher.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from inference.base_tts_infer import BaseTTSInfer
|
3 |
+
from utils.ckpt_utils import load_ckpt, get_last_checkpoint
|
4 |
+
from utils.hparams import hparams
|
5 |
+
from modules.ProDiff.model.ProDiff_teacher import GaussianDiffusion
|
6 |
+
from usr.diff.net import DiffNet
|
7 |
+
import os
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
class ProDiffTeacherInfer(BaseTTSInfer):
|
11 |
+
def build_model(self):
|
12 |
+
f0_stats_fn = f'{hparams["binary_data_dir"]}/train_f0s_mean_std.npy'
|
13 |
+
if os.path.exists(f0_stats_fn):
|
14 |
+
hparams['f0_mean'], hparams['f0_std'] = np.load(f0_stats_fn)
|
15 |
+
hparams['f0_mean'] = float(hparams['f0_mean'])
|
16 |
+
hparams['f0_std'] = float(hparams['f0_std'])
|
17 |
+
model = GaussianDiffusion(
|
18 |
+
phone_encoder=self.ph_encoder,
|
19 |
+
out_dims=80, denoise_fn=DiffNet(hparams['audio_num_mel_bins']),
|
20 |
+
timesteps=hparams['timesteps'],
|
21 |
+
loss_type=hparams['diff_loss_type'],
|
22 |
+
spec_min=hparams['spec_min'], spec_max=hparams['spec_max'],
|
23 |
+
)
|
24 |
+
|
25 |
+
model.eval()
|
26 |
+
load_ckpt(model, hparams['work_dir'], 'model')
|
27 |
+
return model
|
28 |
+
|
29 |
+
def forward_model(self, inp):
|
30 |
+
sample = self.input_to_batch(inp)
|
31 |
+
txt_tokens = sample['txt_tokens'] # [B, T_t]
|
32 |
+
with torch.no_grad():
|
33 |
+
output = self.model(txt_tokens, infer=True)
|
34 |
+
mel_out = output['mel_out']
|
35 |
+
wav_out = self.run_vocoder(mel_out)
|
36 |
+
wav_out = wav_out.squeeze().cpu().numpy()
|
37 |
+
return wav_out
|
38 |
+
|
39 |
+
|
40 |
+
if __name__ == '__main__':
|
41 |
+
ProDiffTeacherInfer.example_run()
|
inference/base_tts_infer.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from tasks.tts.dataset_utils import FastSpeechWordDataset
|
6 |
+
from tasks.tts.tts_utils import load_data_preprocessor
|
7 |
+
import numpy as np
|
8 |
+
from modules.FastDiff.module.util import compute_hyperparams_given_schedule, sampling_given_noise_schedule
|
9 |
+
|
10 |
+
import os
|
11 |
+
|
12 |
+
import torch
|
13 |
+
|
14 |
+
from modules.FastDiff.module.FastDiff_model import FastDiff
|
15 |
+
from utils.ckpt_utils import load_ckpt
|
16 |
+
from utils.hparams import set_hparams
|
17 |
+
|
18 |
+
|
19 |
+
class BaseTTSInfer:
|
20 |
+
def __init__(self, hparams, device=None):
|
21 |
+
if device is None:
|
22 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
23 |
+
self.hparams = hparams
|
24 |
+
self.device = device
|
25 |
+
self.data_dir = hparams['binary_data_dir']
|
26 |
+
self.preprocessor, self.preprocess_args = load_data_preprocessor()
|
27 |
+
self.ph_encoder = self.preprocessor.load_dict(self.data_dir)
|
28 |
+
self.spk_map = self.preprocessor.load_spk_map(self.data_dir)
|
29 |
+
self.ds_cls = FastSpeechWordDataset
|
30 |
+
self.model = self.build_model()
|
31 |
+
self.model.eval()
|
32 |
+
self.model.to(self.device)
|
33 |
+
self.vocoder, self.diffusion_hyperparams, self.noise_schedule = self.build_vocoder()
|
34 |
+
self.vocoder.eval()
|
35 |
+
self.vocoder.to(self.device)
|
36 |
+
|
37 |
+
def build_model(self):
|
38 |
+
raise NotImplementedError
|
39 |
+
|
40 |
+
def forward_model(self, inp):
|
41 |
+
raise NotImplementedError
|
42 |
+
|
43 |
+
def build_vocoder(self):
|
44 |
+
base_dir = self.hparams['vocoder_ckpt']
|
45 |
+
config_path = f'{base_dir}/config.yaml'
|
46 |
+
config = set_hparams(config_path, global_hparams=False)
|
47 |
+
vocoder = FastDiff(audio_channels=config['audio_channels'],
|
48 |
+
inner_channels=config['inner_channels'],
|
49 |
+
cond_channels=config['cond_channels'],
|
50 |
+
upsample_ratios=config['upsample_ratios'],
|
51 |
+
lvc_layers_each_block=config['lvc_layers_each_block'],
|
52 |
+
lvc_kernel_size=config['lvc_kernel_size'],
|
53 |
+
kpnet_hidden_channels=config['kpnet_hidden_channels'],
|
54 |
+
kpnet_conv_size=config['kpnet_conv_size'],
|
55 |
+
dropout=config['dropout'],
|
56 |
+
diffusion_step_embed_dim_in=config['diffusion_step_embed_dim_in'],
|
57 |
+
diffusion_step_embed_dim_mid=config['diffusion_step_embed_dim_mid'],
|
58 |
+
diffusion_step_embed_dim_out=config['diffusion_step_embed_dim_out'],
|
59 |
+
use_weight_norm=config['use_weight_norm'])
|
60 |
+
load_ckpt(vocoder, base_dir, 'model')
|
61 |
+
|
62 |
+
# Init hyperparameters by linear schedule
|
63 |
+
noise_schedule = torch.linspace(float(config["beta_0"]), float(config["beta_T"]), int(config["T"]))
|
64 |
+
diffusion_hyperparams = compute_hyperparams_given_schedule(noise_schedule)
|
65 |
+
|
66 |
+
if config['noise_schedule'] != '':
|
67 |
+
noise_schedule = config['noise_schedule']
|
68 |
+
if isinstance(noise_schedule, list):
|
69 |
+
noise_schedule = torch.FloatTensor(noise_schedule)
|
70 |
+
else:
|
71 |
+
# Select Schedule
|
72 |
+
try:
|
73 |
+
reverse_step = int(self.hparams.get('N'))
|
74 |
+
except:
|
75 |
+
print(
|
76 |
+
'Please specify $N (the number of revere iterations) in config file. Now denoise with 4 iterations.')
|
77 |
+
reverse_step = 4
|
78 |
+
if reverse_step == 1000:
|
79 |
+
noise_schedule = torch.linspace(0.000001, 0.01, 1000)
|
80 |
+
elif reverse_step == 200:
|
81 |
+
noise_schedule = torch.linspace(0.0001, 0.02, 200)
|
82 |
+
|
83 |
+
# Below are schedules derived by Noise Predictor.
|
84 |
+
# We will release codes of noise predictor training process & noise scheduling process soon. Please Stay Tuned!
|
85 |
+
elif reverse_step == 8:
|
86 |
+
noise_schedule = [6.689325005027058e-07, 1.0033881153503899e-05, 0.00015496854030061513,
|
87 |
+
0.002387222135439515, 0.035597629845142365, 0.3681158423423767, 0.4735414385795593,
|
88 |
+
0.5]
|
89 |
+
elif reverse_step == 6:
|
90 |
+
noise_schedule = [1.7838445955931093e-06, 2.7984189728158526e-05, 0.00043231004383414984,
|
91 |
+
0.006634317338466644, 0.09357017278671265, 0.6000000238418579]
|
92 |
+
elif reverse_step == 4:
|
93 |
+
noise_schedule = [3.2176e-04, 2.5743e-03, 2.5376e-02, 7.0414e-01]
|
94 |
+
elif reverse_step == 3:
|
95 |
+
noise_schedule = [9.0000e-05, 9.0000e-03, 6.0000e-01]
|
96 |
+
else:
|
97 |
+
raise NotImplementedError
|
98 |
+
|
99 |
+
if isinstance(noise_schedule, list):
|
100 |
+
noise_schedule = torch.FloatTensor(noise_schedule)
|
101 |
+
|
102 |
+
return vocoder, diffusion_hyperparams, noise_schedule
|
103 |
+
|
104 |
+
def run_vocoder(self, c):
|
105 |
+
c = c.transpose(2, 1)
|
106 |
+
audio_length = c.shape[-1] * self.hparams["hop_size"]
|
107 |
+
y = sampling_given_noise_schedule(
|
108 |
+
self.vocoder, (1, 1, audio_length), self.diffusion_hyperparams, self.noise_schedule, condition=c, ddim=False, return_sequence=False)
|
109 |
+
return y
|
110 |
+
|
111 |
+
def preprocess_input(self, inp):
|
112 |
+
"""
|
113 |
+
:param inp: {'text': str, 'item_name': (str, optional), 'spk_name': (str, optional)}
|
114 |
+
:return:
|
115 |
+
"""
|
116 |
+
preprocessor, preprocess_args = self.preprocessor, self.preprocess_args
|
117 |
+
text_raw = inp['text']
|
118 |
+
item_name = inp.get('item_name', '<ITEM_NAME>')
|
119 |
+
spk_name = inp.get('spk_name', 'SPK1')
|
120 |
+
ph, txt = preprocessor.txt_to_ph(
|
121 |
+
preprocessor.txt_processor, text_raw, preprocess_args)
|
122 |
+
ph_token = self.ph_encoder.encode(ph)
|
123 |
+
spk_id = self.spk_map[spk_name]
|
124 |
+
item = {'item_name': item_name, 'text': txt, 'ph': ph, 'spk_id': spk_id, 'ph_token': ph_token}
|
125 |
+
item['ph_len'] = len(item['ph_token'])
|
126 |
+
return item
|
127 |
+
|
128 |
+
def input_to_batch(self, item):
|
129 |
+
item_names = [item['item_name']]
|
130 |
+
text = [item['text']]
|
131 |
+
ph = [item['ph']]
|
132 |
+
txt_tokens = torch.LongTensor(item['ph_token'])[None, :].to(self.device)
|
133 |
+
txt_lengths = torch.LongTensor([txt_tokens.shape[1]]).to(self.device)
|
134 |
+
spk_ids = torch.LongTensor(item['spk_id'])[None, :].to(self.device)
|
135 |
+
batch = {
|
136 |
+
'item_name': item_names,
|
137 |
+
'text': text,
|
138 |
+
'ph': ph,
|
139 |
+
'txt_tokens': txt_tokens,
|
140 |
+
'txt_lengths': txt_lengths,
|
141 |
+
'spk_ids': spk_ids,
|
142 |
+
}
|
143 |
+
return batch
|
144 |
+
|
145 |
+
def postprocess_output(self, output):
|
146 |
+
return output
|
147 |
+
|
148 |
+
def infer_once(self, inp):
|
149 |
+
inp = self.preprocess_input(inp)
|
150 |
+
output = self.forward_model(inp)
|
151 |
+
output = self.postprocess_output(output)
|
152 |
+
return output
|
153 |
+
|
154 |
+
@classmethod
|
155 |
+
def example_run(cls):
|
156 |
+
from utils.hparams import set_hparams
|
157 |
+
from utils.hparams import hparams as hp
|
158 |
+
from utils.audio import save_wav
|
159 |
+
|
160 |
+
set_hparams()
|
161 |
+
inp = {
|
162 |
+
'text': hp['text']
|
163 |
+
}
|
164 |
+
infer_ins = cls(hp)
|
165 |
+
out = infer_ins.infer_once(inp)
|
166 |
+
os.makedirs('infer_out', exist_ok=True)
|
167 |
+
save_wav(out, f'infer_out/{hp["text"]}.wav', hp['audio_sample_rate'])
|
inference/gradio/gradio_settings.yaml
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
title: 'Extremely-Fast diffusion text-to-speech synthesis pipeline with ProDiff and FastDiff'
|
2 |
+
description: |
|
3 |
+
Gradio demo for **2-iter** ProDiff and **4-iter** FastDiff. To use it, simply add your audio, or click one of the examples to load them. **This space is running on CPU, inference will be slower.**
|
4 |
+
|
5 |
+
## Key Features
|
6 |
+
- **Extremely-Fast** diffusion text-to-speech synthesis pipeline for potential **industrial deployment**.
|
7 |
+
- **Tutorial and code base** for speech diffusion models.
|
8 |
+
- More **supported diffusion mechanism** (e.g., guided diffusion) will be available.
|
9 |
+
|
10 |
+
|
11 |
+
article: |
|
12 |
+
## Reference
|
13 |
+
Link to <a href='https://github.com/Rongjiehuang/ProDiff' style='color:blue;' target='_blank\'>ProDiff Github REPO</a>
|
14 |
+
|
15 |
+
If you find this code useful in your research, please cite our work:
|
16 |
+
```
|
17 |
+
@inproceedings{huang2022prodiff,
|
18 |
+
title={ProDiff: Progressive Fast Diffusion Model For High-Quality Text-to-Speech},
|
19 |
+
author={Huang, Rongjie and Zhao, Zhou and Liu, Huadai and Liu, Jinglin and Cui, Chenye and Ren, Yi},
|
20 |
+
booktitle={Proceedings of the 30th ACM International Conference on Multimedia},
|
21 |
+
year={2022}
|
22 |
+
|
23 |
+
@inproceedings{huang2022fastdiff,
|
24 |
+
title={FastDiff: A Fast Conditional Diffusion Model for High-Quality Speech Synthesis},
|
25 |
+
author={Huang, Rongjie and Lam, Max WY and Wang, Jun and Su, Dan and Yu, Dong and Ren, Yi and Zhao, Zhou},
|
26 |
+
booktitle = {Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, {IJCAI-22}},
|
27 |
+
year={2022}
|
28 |
+
}
|
29 |
+
```
|
30 |
+
|
31 |
+
## Disclaimer
|
32 |
+
Any organization or individual is prohibited from using any technology mentioned in this paper to generate someone's speech without his/her consent, including but not limited to government leaders, political figures, and celebrities. If you do not comply with this item, you could be in violation of copyright laws.
|
33 |
+
|
34 |
+
example_inputs:
|
35 |
+
- |-
|
36 |
+
the invention of movable metal letters in the middle of the fifteenth century may justly be considered as the invention of the art of printing.
|
37 |
+
- |-
|
38 |
+
Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition.
|
39 |
+
inference_cls: inference.ProDiff.ProDiffInfer
|
40 |
+
exp_name: ProDiff
|
41 |
+
config: modules/ProDiff/config/prodiff.yaml
|
inference/gradio/infer.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import re
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import yaml
|
6 |
+
from gradio.inputs import Textbox
|
7 |
+
|
8 |
+
from inference.base_tts_infer import BaseTTSInfer
|
9 |
+
from utils.hparams import set_hparams
|
10 |
+
from utils.hparams import hparams as hp
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
from data_gen.tts.data_gen_utils import is_sil_phoneme, PUNCS
|
14 |
+
|
15 |
+
class GradioInfer:
|
16 |
+
def __init__(self, exp_name, config, inference_cls, title, description, article, example_inputs):
|
17 |
+
self.exp_name = exp_name
|
18 |
+
self.config = config
|
19 |
+
self.title = title
|
20 |
+
self.description = description
|
21 |
+
self.article = article
|
22 |
+
self.example_inputs = example_inputs
|
23 |
+
pkg = ".".join(inference_cls.split(".")[:-1])
|
24 |
+
cls_name = inference_cls.split(".")[-1]
|
25 |
+
self.inference_cls = getattr(importlib.import_module(pkg), cls_name)
|
26 |
+
|
27 |
+
def greet(self, text):
|
28 |
+
sents = re.split(rf'([{PUNCS}])', text.replace('\n', ','))
|
29 |
+
if sents[-1] not in list(PUNCS):
|
30 |
+
sents = sents + ['.']
|
31 |
+
audio_outs = []
|
32 |
+
s = ""
|
33 |
+
for i in range(0, len(sents), 2):
|
34 |
+
if len(sents[i]) > 0:
|
35 |
+
s += sents[i] + sents[i + 1]
|
36 |
+
if len(s) >= 400 or (i >= len(sents) - 2 and len(s) > 0):
|
37 |
+
audio_out = self.infer_ins.infer_once({
|
38 |
+
'text': s
|
39 |
+
})
|
40 |
+
audio_out = audio_out * 32767
|
41 |
+
audio_out = audio_out.astype(np.int16)
|
42 |
+
audio_outs.append(audio_out)
|
43 |
+
audio_outs.append(np.zeros(int(hp['audio_sample_rate'] * 0.3)).astype(np.int16))
|
44 |
+
s = ""
|
45 |
+
audio_outs = np.concatenate(audio_outs)
|
46 |
+
return hp['audio_sample_rate'], audio_outs
|
47 |
+
|
48 |
+
def run(self):
|
49 |
+
set_hparams(exp_name=self.exp_name, config=self.config)
|
50 |
+
infer_cls = self.inference_cls
|
51 |
+
self.infer_ins: BaseTTSInfer = infer_cls(hp)
|
52 |
+
example_inputs = self.example_inputs
|
53 |
+
iface = gr.Interface(fn=self.greet,
|
54 |
+
inputs=Textbox(
|
55 |
+
lines=10, placeholder=None, default=example_inputs[0], label="input text"),
|
56 |
+
outputs="audio",
|
57 |
+
allow_flagging="never",
|
58 |
+
title=self.title,
|
59 |
+
description=self.description,
|
60 |
+
article=self.article,
|
61 |
+
examples=example_inputs,
|
62 |
+
enable_queue=True)
|
63 |
+
iface.launch(share=True,cache_examples=True)
|
64 |
+
|
65 |
+
|
66 |
+
if __name__ == '__main__':
|
67 |
+
gradio_config = yaml.safe_load(open('inference/gradio/gradio_settings.yaml'))
|
68 |
+
g = GradioInfer(**gradio_config)
|
69 |
+
g.run()
|
modules/FastDiff/config/FastDiff.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_config:
|
2 |
+
- ./base.yaml
|
3 |
+
|
4 |
+
audio_sample_rate: 22050
|
5 |
+
raw_data_dir: 'data/raw/LJSpeech-1.1'
|
6 |
+
processed_data_dir: 'data/processed/LJSpeech'
|
7 |
+
binary_data_dir: 'data/binary/LJSpeech'
|
modules/FastDiff/config/FastDiff_libritts.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_config:
|
2 |
+
- ./base.yaml
|
3 |
+
|
4 |
+
audio_sample_rate: 22050
|
5 |
+
raw_data_dir: 'data/raw/LibriTTS'
|
6 |
+
processed_data_dir: 'data/processed/LibriTTS'
|
7 |
+
binary_data_dir: 'data/binary/LibriTTS'
|
modules/FastDiff/config/FastDiff_sc09.yaml
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_config:
|
2 |
+
- egs/egs_bases/tts/vocoder/base.yaml
|
3 |
+
- egs/datasets/audio/lj/base_mel2wav.yaml
|
4 |
+
- ./base.yaml
|
5 |
+
|
6 |
+
#raw_data_dir: '/home1/huangrongjie/dataset/sc09/data/'
|
7 |
+
#processed_data_dir: 'data/processed/SC09'
|
8 |
+
#binary_data_dir: 'data/binary/SC09'
|
9 |
+
|
10 |
+
raw_data_dir: '/home1/huangrongjie/Project/AdaGrad/data/raw/SC09/'
|
11 |
+
processed_data_dir: 'data/processed/SC09_ten_processed'
|
12 |
+
binary_data_dir: 'data/binary/SC09_ten_processed'
|
13 |
+
|
14 |
+
pre_align_cls: egs.datasets.audio.sc09.pre_align.Sc09PreAlign
|
15 |
+
audio_sample_rate: 16000
|
16 |
+
max_samples: 12800
|
17 |
+
|
18 |
+
pre_align_args:
|
19 |
+
sox_resample: false
|
20 |
+
sox_to_wav: false
|
21 |
+
allow_no_txt: true
|
22 |
+
trim_sil: true
|
23 |
+
denoise: true
|
24 |
+
|
25 |
+
loud_norm: true
|
modules/FastDiff/config/FastDiff_tacotron.yaml
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_config:
|
2 |
+
- egs/egs_bases/tts/vocoder/pwg.yaml
|
3 |
+
- egs/egs_bases/tts/base_mel2wav.yaml
|
4 |
+
- egs/datasets/audio/lj/pwg.yaml
|
5 |
+
|
6 |
+
raw_data_dir: 'data/raw/LJSpeech-1.1'
|
7 |
+
processed_data_dir: 'data/processed/LJSpeech_FastDiff'
|
8 |
+
#binary_data_dir: 'data/binary/LJSpeech_Taco'
|
9 |
+
binary_data_dir: /apdcephfs/private_nlphuang/preprocess/AdaGrad/data/binary/LJSpeech_Taco
|
10 |
+
|
11 |
+
binarizer_cls: data_gen.tts.vocoder_binarizer.VocoderBinarizer
|
12 |
+
pre_align_cls: egs.datasets.audio.lj.pre_align.LJPreAlign
|
13 |
+
task_cls: modules.FastDiff.task.FastDiff.FastDiffTask
|
14 |
+
binarization_args:
|
15 |
+
with_wav: true
|
16 |
+
with_spk_embed: false
|
17 |
+
with_align: false
|
18 |
+
with_word: false
|
19 |
+
with_txt: false
|
20 |
+
with_f0: false
|
21 |
+
|
22 |
+
# data
|
23 |
+
num_spk: 400
|
24 |
+
max_samples: 25600
|
25 |
+
aux_context_window: 0
|
26 |
+
max_sentences: 20
|
27 |
+
test_input_dir: '' # 'wavs' # wav->wav inference
|
28 |
+
test_mel_dir: '' # 'mels' # mel->wav inference
|
29 |
+
use_wav: True # mel->wav inference
|
30 |
+
|
31 |
+
# training
|
32 |
+
num_sanity_val_steps: -1
|
33 |
+
max_updates: 1000000
|
34 |
+
lr: 2e-4
|
35 |
+
weight_decay: 0
|
36 |
+
|
37 |
+
# FastDiff
|
38 |
+
audio_channels: 1
|
39 |
+
inner_channels: 32
|
40 |
+
cond_channels: 80
|
41 |
+
upsample_ratios: [8, 8, 4]
|
42 |
+
lvc_layers_each_block: 4
|
43 |
+
lvc_kernel_size: 3
|
44 |
+
kpnet_hidden_channels: 64
|
45 |
+
kpnet_conv_size: 3
|
46 |
+
dropout: 0.0
|
47 |
+
diffusion_step_embed_dim_in: 128
|
48 |
+
diffusion_step_embed_dim_mid: 512
|
49 |
+
diffusion_step_embed_dim_out: 512
|
50 |
+
use_weight_norm: True
|
51 |
+
|
52 |
+
# Diffusion
|
53 |
+
T: 1000
|
54 |
+
beta_0: 0.000001
|
55 |
+
beta_T: 0.01
|
56 |
+
noise_schedule: ''
|
57 |
+
N: ''
|
58 |
+
|
modules/FastDiff/config/FastDiff_vctk.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
base_config:
|
2 |
+
- ./base.yaml
|
3 |
+
|
4 |
+
audio_sample_rate: 22050
|
5 |
+
raw_data_dir: 'data/raw/VCTK'
|
6 |
+
processed_data_dir: 'data/processed/VCTK'
|
7 |
+
binary_data_dir: 'data/binary/VCTK'
|
modules/FastDiff/config/base.yaml
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#############
|
2 |
+
# Custom dataset preprocess
|
3 |
+
#############
|
4 |
+
audio_num_mel_bins: 80
|
5 |
+
audio_sample_rate: 22050
|
6 |
+
hop_size: 256 # For 22050Hz, 275 ~= 12.5 ms (0.0125 * sample_rate)
|
7 |
+
win_size: 1024 # For 22050Hz, 1100 ~= 50 ms (If None, win_size: fft_size) (0.05 * sample_rate)
|
8 |
+
fmin: 80 # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To test depending on dataset. Pitch info: male~[65, 260], female~[100, 525])
|
9 |
+
fmax: 7600 # To be increased/reduced depending on data.
|
10 |
+
fft_size: 1024 # Extra window size is filled with 0 paddings to match this parameter
|
11 |
+
min_level_db: -100
|
12 |
+
ref_level_db: 20
|
13 |
+
griffin_lim_iters: 60
|
14 |
+
num_spk: 1 # number of speakers
|
15 |
+
mel_vmin: -6
|
16 |
+
mel_vmax: 1.5
|
17 |
+
|
18 |
+
#############
|
19 |
+
# FastDiff Model
|
20 |
+
#############
|
21 |
+
audio_channels: 1
|
22 |
+
inner_channels: 32
|
23 |
+
cond_channels: 80
|
24 |
+
upsample_ratios: [8, 8, 4]
|
25 |
+
lvc_layers_each_block: 4
|
26 |
+
lvc_kernel_size: 3
|
27 |
+
kpnet_hidden_channels: 64
|
28 |
+
kpnet_conv_size: 3
|
29 |
+
dropout: 0.0
|
30 |
+
diffusion_step_embed_dim_in: 128
|
31 |
+
diffusion_step_embed_dim_mid: 512
|
32 |
+
diffusion_step_embed_dim_out: 512
|
33 |
+
use_weight_norm: True
|
34 |
+
|
35 |
+
###########
|
36 |
+
# Diffusion
|
37 |
+
###########
|
38 |
+
T: 1000
|
39 |
+
beta_0: 0.000001
|
40 |
+
beta_T: 0.01
|
41 |
+
noise_schedule: ''
|
42 |
+
N: ''
|
43 |
+
|
44 |
+
|
45 |
+
###########
|
46 |
+
# train and eval
|
47 |
+
###########
|
48 |
+
task_cls: modules.FastDiff.task.FastDiff.FastDiffTask
|
49 |
+
max_updates: 1000000 # max training steps
|
50 |
+
max_samples: 25600 # audio length in training
|
51 |
+
max_sentences: 20 # max batch size in training
|
52 |
+
num_sanity_val_steps: -1
|
53 |
+
max_valid_sentences: 1
|
54 |
+
valid_infer_interval: 10000
|
55 |
+
val_check_interval: 2000
|
56 |
+
num_test_samples: 0
|
57 |
+
num_valid_plots: 10
|
58 |
+
|
59 |
+
|
60 |
+
#############
|
61 |
+
# Stage 1 of data processing
|
62 |
+
#############
|
63 |
+
pre_align_cls: egs.datasets.audio.pre_align.PreAlign
|
64 |
+
pre_align_args:
|
65 |
+
nsample_per_mfa_group: 1000
|
66 |
+
txt_processor: en
|
67 |
+
use_tone: true # for ZH
|
68 |
+
sox_resample: false
|
69 |
+
sox_to_wav: false
|
70 |
+
allow_no_txt: true
|
71 |
+
trim_sil: false
|
72 |
+
denoise: false
|
73 |
+
|
74 |
+
|
75 |
+
#############
|
76 |
+
# Stage 2 of data processing
|
77 |
+
#############
|
78 |
+
binarizer_cls: data_gen.tts.vocoder_binarizer.VocoderBinarizer
|
79 |
+
binarization_args:
|
80 |
+
with_wav: true
|
81 |
+
with_spk_embed: false
|
82 |
+
with_align: false
|
83 |
+
with_word: false
|
84 |
+
with_txt: false
|
85 |
+
with_f0: false
|
86 |
+
shuffle: false
|
87 |
+
with_spk_id: true
|
88 |
+
with_f0cwt: false
|
89 |
+
with_linear: false
|
90 |
+
trim_eos_bos: false
|
91 |
+
reset_phone_dict: true
|
92 |
+
reset_word_dict: true
|
93 |
+
|
94 |
+
|
95 |
+
###########
|
96 |
+
# optimization
|
97 |
+
###########
|
98 |
+
lr: 2e-4 # learning rate
|
99 |
+
weight_decay: 0
|
100 |
+
scheduler: rsqrt # rsqrt|none
|
101 |
+
optimizer_adam_beta1: 0.9
|
102 |
+
optimizer_adam_beta2: 0.98
|
103 |
+
clip_grad_norm: 1
|
104 |
+
clip_grad_value: 0
|
105 |
+
|
106 |
+
#############
|
107 |
+
# Setting for this Pytorch framework
|
108 |
+
#############
|
109 |
+
max_input_tokens: 1550
|
110 |
+
frames_multiple: 1
|
111 |
+
use_word_input: false
|
112 |
+
vocoder: FastDiff
|
113 |
+
vocoder_ckpt: checkpoints/FastDiff
|
114 |
+
vocoder_denoise_c: 0.0
|
115 |
+
max_tokens: 30000
|
116 |
+
max_valid_tokens: 60000
|
117 |
+
test_ids: [ ]
|
118 |
+
profile_infer: false
|
119 |
+
out_wav_norm: false
|
120 |
+
save_gt: true
|
121 |
+
save_f0: false
|
122 |
+
aux_context_window: 0
|
123 |
+
test_input_dir: '' # 'wavs' # wav->wav inference
|
124 |
+
test_mel_dir: '' # 'mels' # mel->wav inference
|
125 |
+
use_wav: True # mel->wav inference
|
126 |
+
pitch_extractor: parselmouth
|
127 |
+
loud_norm: false
|
128 |
+
endless_ds: true
|
129 |
+
test_num: 100
|
130 |
+
min_frames: 0
|
131 |
+
max_frames: 1548
|
132 |
+
ds_workers: 1
|
133 |
+
gen_dir_name: ''
|
134 |
+
accumulate_grad_batches: 1
|
135 |
+
tb_log_interval: 100
|
136 |
+
print_nan_grads: false
|
137 |
+
work_dir: '' # experiment directory.
|
138 |
+
infer: false # inference
|
139 |
+
amp: false
|
140 |
+
debug: false
|
141 |
+
save_codes: []
|
142 |
+
save_best: true
|
143 |
+
num_ckpt_keep: 3
|
144 |
+
sort_by_len: true
|
145 |
+
load_ckpt: ''
|
146 |
+
check_val_every_n_epoch: 10
|
147 |
+
max_epochs: 1000
|
148 |
+
eval_max_batches: -1
|
149 |
+
resume_from_checkpoint: 0
|
150 |
+
rename_tmux: true
|
151 |
+
valid_monitor_key: 'val_loss'
|
152 |
+
valid_monitor_mode: 'min'
|
153 |
+
train_set_name: 'train'
|
154 |
+
train_sets: ''
|
155 |
+
valid_set_name: 'valid'
|
156 |
+
test_set_name: 'test'
|
157 |
+
seed: 1234
|