from itertools import chain from torch.utils.data import ConcatDataset from torch.utils.tensorboard import SummaryWriter import subprocess import traceback from datetime import datetime from functools import wraps from utils.hparams import hparams import random import sys import numpy as np from utils.trainer import Trainer from torch import nn import torch.utils.data import utils import logging import os torch.multiprocessing.set_sharing_strategy(os.getenv('TORCH_SHARE_STRATEGY', 'file_system')) log_format = '%(asctime)s %(message)s' logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt='%m/%d %I:%M:%S %p') def data_loader(fn): """ Decorator to make any fx with this use the lazy property :param fn: :return: """ wraps(fn) attr_name = '_lazy_' + fn.__name__ def _get_data_loader(self): try: value = getattr(self, attr_name) except AttributeError: try: value = fn(self) # Lazy evaluation, done only once. except AttributeError as e: # Guard against AttributeError suppression. (Issue #142) traceback.print_exc() error = f'{fn.__name__}: An AttributeError was encountered: ' + str(e) raise RuntimeError(error) from e setattr(self, attr_name, value) # Memoize evaluation. return value return _get_data_loader class BaseDataset(torch.utils.data.Dataset): def __init__(self, shuffle): super().__init__() self.hparams = hparams self.shuffle = shuffle self.sort_by_len = hparams['sort_by_len'] self.sizes = None @property def _sizes(self): return self.sizes def __getitem__(self, index): raise NotImplementedError def collater(self, samples): raise NotImplementedError def __len__(self): return len(self._sizes) def num_tokens(self, index): return self.size(index) def size(self, index): """Return an example's size as a float or tuple. This value is used when filtering a dataset with ``--max-positions``.""" return min(self._sizes[index], hparams['max_frames']) def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.shuffle: indices = np.random.permutation(len(self)) if self.sort_by_len: indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')] else: indices = np.arange(len(self)) return indices @property def num_workers(self): return int(os.getenv('NUM_WORKERS', hparams['ds_workers'])) class BaseConcatDataset(ConcatDataset): def collater(self, samples): return self.datasets[0].collater(samples) @property def _sizes(self): if not hasattr(self, 'sizes'): self.sizes = list(chain.from_iterable([d._sizes for d in self.datasets])) return self.sizes def size(self, index): return min(self._sizes[index], hparams['max_frames']) def num_tokens(self, index): return self.size(index) def ordered_indices(self): """Return an ordered list of indices. Batches will be constructed based on this order.""" if self.datasets[0].shuffle: indices = np.random.permutation(len(self)) if self.datasets[0].sort_by_len: indices = indices[np.argsort(np.array(self._sizes)[indices], kind='mergesort')] else: indices = np.arange(len(self)) return indices @property def num_workers(self): return self.datasets[0].num_workers class BaseTask(nn.Module): def __init__(self, *args, **kwargs): # dataset configs super(BaseTask, self).__init__() self.current_epoch = 0 self.global_step = 0 self.trainer = None self.use_ddp = False self.gradient_clip_norm = hparams['clip_grad_norm'] self.gradient_clip_val = hparams.get('clip_grad_value', 0) self.model = None self.training_losses_meter = None self.logger: SummaryWriter = None ###################### # build model, dataloaders, optimizer, scheduler and tensorboard ###################### def build_model(self): raise NotImplementedError @data_loader def train_dataloader(self): raise NotImplementedError @data_loader def test_dataloader(self): raise NotImplementedError @data_loader def val_dataloader(self): raise NotImplementedError def build_scheduler(self, optimizer): return None def build_optimizer(self, model): raise NotImplementedError def configure_optimizers(self): optm = self.build_optimizer(self.model) self.scheduler = self.build_scheduler(optm) if isinstance(optm, (list, tuple)): return optm return [optm] def build_tensorboard(self, save_dir, name, version, **kwargs): root_dir = os.path.join(save_dir, name) os.makedirs(root_dir, exist_ok=True) log_dir = os.path.join(root_dir, "version_" + str(version)) self.logger = SummaryWriter(log_dir=log_dir, **kwargs) ###################### # training ###################### def on_train_start(self): pass def on_epoch_start(self): self.training_losses_meter = {'total_loss': utils.AvgrageMeter()} def _training_step(self, sample, batch_idx, optimizer_idx): """ :param sample: :param batch_idx: :return: total loss: torch.Tensor, loss_log: dict """ raise NotImplementedError def training_step(self, sample, batch_idx, optimizer_idx=-1): """ :param sample: :param batch_idx: :param optimizer_idx: :return: {'loss': torch.Tensor, 'progress_bar': dict, 'tb_log': dict} """ loss_ret = self._training_step(sample, batch_idx, optimizer_idx) if loss_ret is None: return {'loss': None} total_loss, log_outputs = loss_ret log_outputs = utils.tensors_to_scalars(log_outputs) for k, v in log_outputs.items(): if k not in self.training_losses_meter: self.training_losses_meter[k] = utils.AvgrageMeter() if not np.isnan(v): self.training_losses_meter[k].update(v) self.training_losses_meter['total_loss'].update(total_loss.item()) if optimizer_idx >= 0: log_outputs[f'lr_{optimizer_idx}'] = self.trainer.optimizers[optimizer_idx].param_groups[0]['lr'] progress_bar_log = log_outputs tb_log = {f'tr/{k}': v for k, v in log_outputs.items()} return { 'loss': total_loss, 'progress_bar': progress_bar_log, 'tb_log': tb_log } def on_before_optimization(self, opt_idx): if self.gradient_clip_norm > 0: torch.nn.utils.clip_grad_norm_(self.parameters(), self.gradient_clip_norm) if self.gradient_clip_val > 0: torch.nn.utils.clip_grad_value_(self.parameters(), self.gradient_clip_val) def on_after_optimization(self, epoch, batch_idx, optimizer, optimizer_idx): if self.scheduler is not None: self.scheduler.step(self.global_step // hparams['accumulate_grad_batches']) def on_epoch_end(self): loss_outputs = {k: round(v.avg, 4) for k, v in self.training_losses_meter.items()} print(f"Epoch {self.current_epoch} ended. Steps: {self.global_step}. {loss_outputs}") def on_train_end(self): pass ###################### # validation ###################### def validation_step(self, sample, batch_idx): """ :param sample: :param batch_idx: :return: output: {"losses": {...}, "total_loss": float, ...} or (total loss: torch.Tensor, loss_log: dict) """ raise NotImplementedError def validation_end(self, outputs): """ :param outputs: :return: loss_output: dict """ all_losses_meter = {'total_loss': utils.AvgrageMeter()} for output in outputs: if len(output) == 0 or output is None: continue if isinstance(output, dict): assert 'losses' in output, 'Key "losses" should exist in validation output.' n = output.pop('nsamples', 1) losses = utils.tensors_to_scalars(output['losses']) total_loss = output.get('total_loss', sum(losses.values())) else: assert len(output) == 2, 'Validation output should only consist of two elements: (total_loss, losses)' n = 1 total_loss, losses = output losses = utils.tensors_to_scalars(losses) if isinstance(total_loss, torch.Tensor): total_loss = total_loss.item() for k, v in losses.items(): if k not in all_losses_meter: all_losses_meter[k] = utils.AvgrageMeter() all_losses_meter[k].update(v, n) all_losses_meter['total_loss'].update(total_loss, n) loss_output = {k: round(v.avg, 4) for k, v in all_losses_meter.items()} print(f"| Valid results: {loss_output}") return { 'tb_log': {f'val/{k}': v for k, v in loss_output.items()}, 'val_loss': loss_output['total_loss'] } ###################### # testing ###################### def test_start(self): pass def test_step(self, sample, batch_idx): return self.validation_step(sample, batch_idx) def test_end(self, outputs): return self.validation_end(outputs) ###################### # utils ###################### def load_ckpt(self, ckpt_base_dir, current_model_name=None, model_name='model', force=True, strict=True): if current_model_name is None: current_model_name = model_name utils.load_ckpt(self.__getattr__(current_model_name), ckpt_base_dir, current_model_name, force, strict) ###################### # start training/testing ###################### @classmethod def start(cls): os.environ['MASTER_PORT'] = str(random.randint(15000, 30000)) random.seed(hparams['seed']) np.random.seed(hparams['seed']) work_dir = hparams['work_dir'] trainer = Trainer( work_dir=work_dir, val_check_interval=hparams['val_check_interval'], tb_log_interval=hparams['tb_log_interval'], max_updates=hparams['max_updates'], num_sanity_val_steps=hparams['num_sanity_val_steps'] if not hparams['validate'] else 10000, accumulate_grad_batches=hparams['accumulate_grad_batches'], print_nan_grads=hparams['print_nan_grads'], resume_from_checkpoint=hparams.get('resume_from_checkpoint', 0), amp=hparams['amp'], # save ckpt monitor_key=hparams['valid_monitor_key'], monitor_mode=hparams['valid_monitor_mode'], num_ckpt_keep=hparams['num_ckpt_keep'], save_best=hparams['save_best'], seed=hparams['seed'], debug=hparams['debug'] ) if not hparams['inference']: # train if len(hparams['save_codes']) > 0: t = datetime.now().strftime('%Y%m%d%H%M%S') code_dir = f'{work_dir}/codes/{t}' subprocess.check_call(f'mkdir -p "{code_dir}"', shell=True) for c in hparams['save_codes']: if os.path.exists(c): subprocess.check_call(f'rsync -av --exclude=__pycache__ "{c}" "{code_dir}/"', shell=True) print(f"| Copied codes to {code_dir}.") trainer.fit(cls) else: trainer.test(cls) def on_keyboard_interrupt(self): pass