from utils.cwt import get_lf0_cwt import torch.optim import torch.utils.data import importlib from utils.indexed_datasets import IndexedDataset from utils.pitch_utils import norm_interp_f0, denorm_f0, f0_to_coarse import numpy as np from tasks.base_task import BaseDataset import torch import torch.optim import torch.utils.data import utils import torch.distributions from utils.hparams import hparams from utils.pitch_utils import norm_interp_f0 from resemblyzer import VoiceEncoder import json from data_gen.tts.data_gen_utils import build_phone_encoder class BaseTTSDataset(BaseDataset): def __init__(self, prefix, shuffle=False, test_items=None, test_sizes=None, data_dir=None): super().__init__(shuffle) self.data_dir = hparams['binary_data_dir'] if data_dir is None else data_dir self.prefix = prefix self.hparams = hparams self.indexed_ds = None self.ext_mel2ph = None def load_size(): self.sizes = np.load(f'{self.data_dir}/{self.prefix}_lengths.npy') if prefix == 'test' or hparams['inference']: if test_items is not None: self.indexed_ds, self.sizes = test_items, test_sizes else: load_size() if hparams['num_test_samples'] > 0: self.avail_idxs = [x for x in range(hparams['num_test_samples']) \ if x < len(self.sizes)] if len(hparams['test_ids']) > 0: self.avail_idxs = hparams['test_ids'] + self.avail_idxs else: self.avail_idxs = list(range(len(self.sizes))) else: load_size() self.avail_idxs = list(range(len(self.sizes))) if hparams['min_frames'] > 0: self.avail_idxs = [ x for x in self.avail_idxs if self.sizes[x] >= hparams['min_frames']] self.sizes = [self.sizes[i] for i in self.avail_idxs] def _get_item(self, index): if hasattr(self, 'avail_idxs') and self.avail_idxs is not None: index = self.avail_idxs[index] if self.indexed_ds is None: self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}') return self.indexed_ds[index] def __getitem__(self, index): hparams = self.hparams item = self._get_item(index) assert len(item['mel']) == self.sizes[index], (len(item['mel']), self.sizes[index]) max_frames = hparams['max_frames'] spec = torch.Tensor(item['mel'])[:max_frames] max_frames = spec.shape[0] // hparams['frames_multiple'] * hparams['frames_multiple'] spec = spec[:max_frames] phone = torch.LongTensor(item['phone'][:hparams['max_input_tokens']]) sample = { "id": index, "item_name": item['item_name'], "text": item['txt'], "txt_token": phone, "mel": spec, "mel_nonpadding": spec.abs().sum(-1) > 0, } if hparams['use_spk_embed']: sample["spk_embed"] = torch.Tensor(item['spk_embed']) if hparams['use_spk_id']: sample["spk_id"] = item['spk_id'] return sample def collater(self, samples): if len(samples) == 0: return {} hparams = self.hparams id = torch.LongTensor([s['id'] for s in samples]) item_names = [s['item_name'] for s in samples] text = [s['text'] for s in samples] txt_tokens = utils.collate_1d([s['txt_token'] for s in samples], 0) mels = utils.collate_2d([s['mel'] for s in samples], 0.0) txt_lengths = torch.LongTensor([s['txt_token'].numel() for s in samples]) mel_lengths = torch.LongTensor([s['mel'].shape[0] for s in samples]) batch = { 'id': id, 'item_name': item_names, 'nsamples': len(samples), 'text': text, 'txt_tokens': txt_tokens, 'txt_lengths': txt_lengths, 'mels': mels, 'mel_lengths': mel_lengths, } if hparams['use_spk_embed']: spk_embed = torch.stack([s['spk_embed'] for s in samples]) batch['spk_embed'] = spk_embed if hparams['use_spk_id']: spk_ids = torch.LongTensor([s['spk_id'] for s in samples]) batch['spk_ids'] = spk_ids return batch class FastSpeechDataset(BaseTTSDataset): def __init__(self, prefix, shuffle=False, test_items=None, test_sizes=None, data_dir=None): super().__init__(prefix, shuffle, test_items, test_sizes, data_dir) self.f0_mean, self.f0_std = hparams.get('f0_mean', None), hparams.get('f0_std', None) if prefix == 'test' and hparams['test_input_dir'] != '': self.data_dir = hparams['test_input_dir'] self.indexed_ds = IndexedDataset(f'{self.data_dir}/{self.prefix}') self.indexed_ds = sorted(self.indexed_ds, key=lambda item: item['item_name']) items = {} for i in range(len(self.indexed_ds)): speaker = self.indexed_ds[i]['item_name'].split('_')[0] if speaker not in items.keys(): items[speaker] = [i] else: items[speaker].append(i) sort_item = sorted(items.values(), key=lambda item_pre_speaker: len(item_pre_speaker), reverse=True) self.avail_idxs = [n for a in sort_item for n in a][:hparams['num_test_samples']] self.indexed_ds, self.sizes = self.load_test_inputs() self.avail_idxs = [i for i in range(hparams['num_test_samples'])] if hparams['pitch_type'] == 'cwt': _, hparams['cwt_scales'] = get_lf0_cwt(np.ones(10)) def __getitem__(self, index): sample = super(FastSpeechDataset, self).__getitem__(index) item = self._get_item(index) hparams = self.hparams max_frames = hparams['max_frames'] spec = sample['mel'] T = spec.shape[0] phone = sample['txt_token'] sample['energy'] = (spec.exp() ** 2).sum(-1).sqrt() sample['mel2ph'] = mel2ph = torch.LongTensor(item['mel2ph'])[:T] if 'mel2ph' in item else None if hparams['use_pitch_embed']: assert 'f0' in item if hparams.get('normalize_pitch', False): f0 = item["f0"] if len(f0 > 0) > 0 and f0[f0 > 0].std() > 0: f0[f0 > 0] = (f0[f0 > 0] - f0[f0 > 0].mean()) / f0[f0 > 0].std() * hparams['f0_std'] + \ hparams['f0_mean'] f0[f0 > 0] = f0[f0 > 0].clip(min=60, max=500) pitch = f0_to_coarse(f0) pitch = torch.LongTensor(pitch[:max_frames]) else: pitch = torch.LongTensor(item.get("pitch"))[:max_frames] if "pitch" in item else None f0, uv = norm_interp_f0(item["f0"][:max_frames], hparams) uv = torch.FloatTensor(uv) f0 = torch.FloatTensor(f0) if hparams['pitch_type'] == 'cwt': cwt_spec = torch.Tensor(item['cwt_spec'])[:max_frames] f0_mean = item.get('f0_mean', item.get('cwt_mean')) f0_std = item.get('f0_std', item.get('cwt_std')) sample.update({"cwt_spec": cwt_spec, "f0_mean": f0_mean, "f0_std": f0_std}) elif hparams['pitch_type'] == 'ph': if "f0_ph" in item: f0 = torch.FloatTensor(item['f0_ph']) else: f0 = denorm_f0(f0, None, hparams) f0_phlevel_sum = torch.zeros_like(phone).float().scatter_add(0, mel2ph - 1, f0) f0_phlevel_num = torch.zeros_like(phone).float().scatter_add( 0, mel2ph - 1, torch.ones_like(f0)).clamp_min(1) f0_ph = f0_phlevel_sum / f0_phlevel_num f0, uv = norm_interp_f0(f0_ph, hparams) else: f0 = uv = torch.zeros_like(mel2ph) pitch = None sample["f0"], sample["uv"], sample["pitch"] = f0, uv, pitch if hparams['use_spk_embed']: sample["spk_embed"] = torch.Tensor(item['spk_embed']) if hparams['use_spk_id']: sample["spk_id"] = item['spk_id'] return sample def collater(self, samples): if len(samples) == 0: return {} hparams = self.hparams batch = super(FastSpeechDataset, self).collater(samples) f0 = utils.collate_1d([s['f0'] for s in samples], 0.0) pitch = utils.collate_1d([s['pitch'] for s in samples]) if samples[0]['pitch'] is not None else None uv = utils.collate_1d([s['uv'] for s in samples]) energy = utils.collate_1d([s['energy'] for s in samples], 0.0) mel2ph = utils.collate_1d([s['mel2ph'] for s in samples], 0.0) \ if samples[0]['mel2ph'] is not None else None batch.update({ 'mel2ph': mel2ph, 'energy': energy, 'pitch': pitch, 'f0': f0, 'uv': uv, }) if hparams['pitch_type'] == 'cwt': cwt_spec = utils.collate_2d([s['cwt_spec'] for s in samples]) f0_mean = torch.Tensor([s['f0_mean'] for s in samples]) f0_std = torch.Tensor([s['f0_std'] for s in samples]) batch.update({'cwt_spec': cwt_spec, 'f0_mean': f0_mean, 'f0_std': f0_std}) return batch def load_test_inputs(self): binarizer_cls = hparams.get("binarizer_cls", 'data_gen.tts.base_binarizerr.BaseBinarizer') pkg = ".".join(binarizer_cls.split(".")[:-1]) cls_name = binarizer_cls.split(".")[-1] binarizer_cls = getattr(importlib.import_module(pkg), cls_name) ph_set_fn = f"{hparams['binary_data_dir']}/phone_set.json" ph_set = json.load(open(ph_set_fn, 'r')) print("| phone set: ", ph_set) phone_encoder = build_phone_encoder(hparams['binary_data_dir']) word_encoder = None voice_encoder = VoiceEncoder().cuda() encoder = [phone_encoder, word_encoder] sizes = [] items = [] for i in range(len(self.avail_idxs)): item = self._get_item(i) item2tgfn = f"{hparams['test_input_dir'].replace('binary', 'processed')}/mfa_outputs/{item['item_name']}.TextGrid" item = binarizer_cls.process_item(item['item_name'], item['ph'], item['txt'], item2tgfn, item['wav_fn'], item['spk_id'], encoder, hparams['binarization_args']) item['spk_embed'] = voice_encoder.embed_utterance(item['wav']) \ if hparams['binarization_args']['with_spk_embed'] else None # 判断是否保存embedding文件 items.append(item) sizes.append(item['len']) return items, sizes class FastSpeechWordDataset(FastSpeechDataset): def __getitem__(self, index): sample = super(FastSpeechWordDataset, self).__getitem__(index) item = self._get_item(index) max_frames = hparams['max_frames'] sample["ph_words"] = item["ph_words"] sample["word_tokens"] = torch.LongTensor(item["word_tokens"]) sample["mel2word"] = torch.LongTensor(item.get("mel2word"))[:max_frames] sample["ph2word"] = torch.LongTensor(item['ph2word'][:hparams['max_input_tokens']]) return sample def collater(self, samples): batch = super(FastSpeechWordDataset, self).collater(samples) ph_words = [s['ph_words'] for s in samples] batch['ph_words'] = ph_words word_tokens = utils.collate_1d([s['word_tokens'] for s in samples], 0) batch['word_tokens'] = word_tokens mel2word = utils.collate_1d([s['mel2word'] for s in samples], 0) batch['mel2word'] = mel2word ph2word = utils.collate_1d([s['ph2word'] for s in samples], 0) batch['ph2word'] = ph2word return batch