import torch import torch.nn as nn import cv2 import gradio as gr import glob from typing import List import torch.nn.functional as F import torchvision.transforms as T from sklearn.decomposition import PCA import sklearn import numpy as np # Constants patch_h = 40 patch_w = 40 # Use GPU if available if torch.cuda.is_available(): device = torch.device("cuda") else: device = torch.device("cpu") # DINOV2 model = torch.hub.load('facebookresearch/dinov2', 'dinov2_vitl14') # Trasnforms transform = T.Compose([ T.Resize((patch_h * 14, patch_w * 14)), T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ]) # Empty Tenosr imgs_tensor = torch.zeros(4, 3, patch_h * 14, patch_w * 14) # PCA pca = PCA(n_components=3) def query_image(img1, img2, img3, img4) -> List[np.ndarray]: # Transform imgs = [img1, img2, img3, img4] for i, img in enumerate(imgs): img = np.transpose(img, (2, 0, 1)) imgs_tensor[i] = transform(torch.Tensor(img)) # Get feature from patches with torch.no_grad(): features_dict = model.forward_features(imgs_tensor) features = features_dict['x_prenorm'][:, 1:] features = features.reshape(4 * patch_h * patch_w, -1) # PCA Feature pca.fit(features) pca_features = pca.transform(features) pca_feature = sklearn.preprocessing.minmax_scale(pca_features) # Foreground/Background pca_features_bg = pca_features[:, 0] < 0 pca_features_fg = ~pca_features_bg # PCA with only foreground pca.fit(features[pca_features_fg]) pca_features_rem = pca.transform(features[pca_features_fg]) # Min Max Normalization for i in range(3): pca_features_rem[:, i] = (pca_features_rem[:, i] - pca_features_rem[:, i].min()) / (pca_features_rem[:, i].max() - pca_features_rem[:, i].min()) pca_features_rgb = np.zeros((4 * patch_h * patch_w, 3)) pca_features_rgb[pca_features_bg] = 0 pca_features_rgb[pca_features_fg] = pca_features_rem pca_features_rgb = pca_features_rgb.reshape(4, patch_h, patch_w, 3) return [pca_features_rgb[i] for i in range(4)] description = """ DINOV2 PCA """ demo = gr.Interface( query_image, inputs=[gr.Image(), gr.Image(), gr.Image(), gr.Image()], outputs=[gr.Image(), gr.Image(), gr.Image(), gr.Image()], title="DINOV2 PCA", description=description, examples=[], ) demo.launch()