RRoundTable commited on
Commit
691eb11
·
1 Parent(s): adb0128
Files changed (1) hide show
  1. app.py +7 -5
app.py CHANGED
@@ -75,19 +75,20 @@ def calculate_embedding(
75
  embedding = infer(image)
76
  database.append((img_path, embedding))
77
  print(f"Embedding Calculation: {time.time() - start}")
78
- filepath = "database.npy"
79
  with open(filepath, "wb") as f:
80
  pickle.dump(database, f)
81
  return filepath
82
 
83
 
84
  def instance_recognition(
85
- embedding_filepath: str,
 
86
  image_path: str,
87
  ) -> List[np.ndarray]:
88
- with open(embedding_filepath.name, "rb") as f:
89
  embeddings = pickle.load(f)
90
-
91
  embedding_vectors = []
92
  image_paths = []
93
  for img_path, embedding in embeddings:
@@ -132,6 +133,7 @@ with gr.Blocks() as demo:
132
  infer_btn = gr.Button(value="Inference")
133
  input_image = gr.Image(type="filepath", label="Input Image")
134
  image_embedding_file = gr.File(type="file", label="Image Embeddings")
 
135
 
136
  with gr.Row():
137
  output_images = [
@@ -143,7 +145,7 @@ with gr.Blocks() as demo:
143
 
144
  infer_btn.click(
145
  instance_recognition,
146
- inputs=[image_embedding_file, input_image],
147
  outputs=output_images + distances,
148
  )
149
 
 
75
  embedding = infer(image)
76
  database.append((img_path, embedding))
77
  print(f"Embedding Calculation: {time.time() - start}")
78
+ filepath = "database.pickle"
79
  with open(filepath, "wb") as f:
80
  pickle.dump(database, f)
81
  return filepath
82
 
83
 
84
  def instance_recognition(
85
+ embedding_file,
86
+ zipfile,
87
  image_path: str,
88
  ) -> List[np.ndarray]:
89
+ with open(embedding_file.name, "rb") as f:
90
  embeddings = pickle.load(f)
91
+ unzip(zipfile.name)
92
  embedding_vectors = []
93
  image_paths = []
94
  for img_path, embedding in embeddings:
 
133
  infer_btn = gr.Button(value="Inference")
134
  input_image = gr.Image(type="filepath", label="Input Image")
135
  image_embedding_file = gr.File(type="file", label="Image Embeddings")
136
+ image_zip_file = gr.File(type="file", label="Image Zip File")
137
 
138
  with gr.Row():
139
  output_images = [
 
145
 
146
  infer_btn.click(
147
  instance_recognition,
148
+ inputs=[image_embedding_file, image_zip_file, input_image],
149
  outputs=output_images + distances,
150
  )
151