File size: 1,407 Bytes
350ba75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
# %%
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as stats
data = pd.read_csv("results/timings.csv", index_col="Unnamed: 0")
data
# %%
data.columns
# %%
data_retrieve = data[["faiss_dpr.retrieve", "faiss_longformer.retrieve",
"es_dpr.retrieve", "es_longformer.retrieve"]]
# %%
plt.title("Retrieval time")
plt.ylabel("Time (s)")
plt.xlabel("Model")
plt.boxplot(data_retrieve, labels=[
"A1", "A2", "B1", "B2"])
plt.savefig("results/retrieval_time.png")
# %%
print(data_retrieve.describe())
with open("results/retrieval_time.tex", "w") as f:
f.write(data_retrieve.describe().to_latex())
# %%
# now the same for the reader
data_read = data[["faiss_dpr.read", "faiss_longformer.read",
"es_dpr.read", "es_longformer.read"]]
plt.title("Reading time")
plt.ylabel("Time (s)")
plt.xlabel("Model")
plt.boxplot(data_read, labels=["A1", "A2", "B1", "B2"])
plt.savefig("results/read_time.png")
# %%
print(data_read.describe())
with open("results/read_time.tex", "w") as f:
f.write(data_read.describe().to_latex())
# Statistical tests for reading time
# %%
stats.probplot(data_retrieve["es_longformer.retrieve"], dist="norm", plot=plt)
# %%
# %%
anova_retrieve = stats.f_oneway(*data_retrieve.T.values)
anova_read = stats.f_oneway(*data_read.T.values)
print(f"retrieve\n {anova_retrieve} \n\nread\n {anova_read}")
# %%
|