|
|
|
import pandas as pd |
|
import matplotlib.pyplot as plt |
|
import scipy.stats as stats |
|
|
|
data = pd.read_csv("results/timings.csv", index_col="Unnamed: 0") |
|
data |
|
|
|
data.columns |
|
|
|
|
|
data_retrieve = data[["faiss_dpr.retrieve", "faiss_longformer.retrieve", |
|
"es_dpr.retrieve", "es_longformer.retrieve"]] |
|
|
|
|
|
plt.title("Retrieval time") |
|
plt.ylabel("Time (s)") |
|
plt.xlabel("Model") |
|
plt.boxplot(data_retrieve, labels=[ |
|
"A1", "A2", "B1", "B2"]) |
|
plt.savefig("results/retrieval_time.png") |
|
|
|
|
|
print(data_retrieve.describe()) |
|
|
|
with open("results/retrieval_time.tex", "w") as f: |
|
f.write(data_retrieve.describe().to_latex()) |
|
|
|
|
|
|
|
|
|
data_read = data[["faiss_dpr.read", "faiss_longformer.read", |
|
"es_dpr.read", "es_longformer.read"]] |
|
|
|
plt.title("Reading time") |
|
plt.ylabel("Time (s)") |
|
plt.xlabel("Model") |
|
plt.boxplot(data_read, labels=["A1", "A2", "B1", "B2"]) |
|
plt.savefig("results/read_time.png") |
|
|
|
|
|
print(data_read.describe()) |
|
|
|
with open("results/read_time.tex", "w") as f: |
|
f.write(data_read.describe().to_latex()) |
|
|
|
|
|
|
|
|
|
|
|
stats.probplot(data_retrieve["es_longformer.retrieve"], dist="norm", plot=plt) |
|
|
|
|
|
|
|
|
|
anova_retrieve = stats.f_oneway(*data_retrieve.T.values) |
|
anova_read = stats.f_oneway(*data_read.T.values) |
|
|
|
print(f"retrieve\n {anova_retrieve} \n\nread\n {anova_read}") |
|
|
|
|
|
|