Ramon Meffert
Add evaluation
492106d
raw
history blame
4.94 kB
import os
import os.path
import torch
from dotenv import load_dotenv
from datasets import DatasetDict
from dataclasses import dataclass
from transformers import (
DPRContextEncoder,
DPRContextEncoderTokenizerFast,
DPRQuestionEncoder,
DPRQuestionEncoderTokenizerFast,
LongformerModel,
LongformerTokenizer
)
from transformers.modeling_utils import PreTrainedModel
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
from src.retrievers.base_retriever import RetrieveType, Retriever
from src.utils.log import logger
from src.utils.preprocessing import remove_formulas
from src.utils.timing import timeit
load_dotenv()
@dataclass
class FaissRetrieverOptions:
ctx_encoder: PreTrainedModel
ctx_tokenizer: PreTrainedTokenizerFast
q_encoder: PreTrainedModel
q_tokenizer: PreTrainedTokenizerFast
embedding_path: str
lm: str
@staticmethod
def dpr(embedding_path: str):
return FaissRetrieverOptions(
ctx_encoder=DPRContextEncoder.from_pretrained(
"facebook/dpr-ctx_encoder-single-nq-base"
),
ctx_tokenizer=DPRContextEncoderTokenizerFast.from_pretrained(
"facebook/dpr-ctx_encoder-single-nq-base"
),
q_encoder=DPRQuestionEncoder.from_pretrained(
"facebook/dpr-question_encoder-single-nq-base"
),
q_tokenizer=DPRQuestionEncoderTokenizerFast.from_pretrained(
"facebook/dpr-question_encoder-single-nq-base"
),
embedding_path=embedding_path,
lm="dpr"
)
@staticmethod
def longformer(embedding_path: str):
encoder = LongformerModel.from_pretrained(
"valhalla/longformer-base-4096-finetuned-squadv1"
)
tokenizer = LongformerTokenizer.from_pretrained(
"valhalla/longformer-base-4096-finetuned-squadv1"
)
return FaissRetrieverOptions(
ctx_encoder=encoder,
ctx_tokenizer=tokenizer,
q_encoder=encoder,
q_tokenizer=tokenizer,
embedding_path=embedding_path,
lm="longformer"
)
class FaissRetriever(Retriever):
"""A class used to retrieve relevant documents based on some query.
based on https://huggingface.co/docs/datasets/faiss_es#faiss.
"""
def __init__(self, paragraphs: DatasetDict,
options: FaissRetrieverOptions) -> None:
torch.set_grad_enabled(False)
self.lm = options.lm
# Context encoding and tokenization
self.ctx_encoder = options.ctx_encoder
self.ctx_tokenizer = options.ctx_tokenizer
# Question encoding and tokenization
self.q_encoder = options.q_encoder
self.q_tokenizer = options.q_tokenizer
self.paragraphs = paragraphs
self.embedding_path = options.embedding_path
self.index = self._init_index()
def _embed_question(self, q):
match self.lm:
case "dpr":
tok = self.q_tokenizer(
q, return_tensors="pt", truncation=True, padding=True)
return self.q_encoder(**tok)[0][0].numpy()
case "longformer":
tok = self.q_tokenizer(q, return_tensors="pt")
return self.q_encoder(**tok).last_hidden_state[0][0].numpy()
def _embed_context(self, row):
p = row["text"]
match self.lm:
case "dpr":
tok = self.ctx_tokenizer(
p, return_tensors="pt", truncation=True, padding=True)
enc = self.ctx_encoder(**tok)[0][0].numpy()
return {"embeddings": enc}
case "longformer":
tok = self.ctx_tokenizer(p, return_tensors="pt")
enc = self.ctx_encoder(**tok).last_hidden_state[0][0].numpy()
return {"embeddings": enc}
def _init_index(
self,
force_new_embedding: bool = False):
ds = self.paragraphs["train"]
ds = ds.map(remove_formulas)
if not force_new_embedding and os.path.exists(self.embedding_path):
ds.load_faiss_index(
'embeddings', self.embedding_path) # type: ignore
return ds
else:
# Add FAISS embeddings
index = ds.map(self._embed_context) # type: ignore
index.add_faiss_index(column="embeddings")
# save dataset w/ embeddings
os.makedirs("./src/models/", exist_ok=True)
index.save_faiss_index(
"embeddings", self.embedding_path)
return index
def retrieve(self, query: str, k: int = 5) -> RetrieveType:
question_embedding = self._embed_question(query)
scores, results = self.index.get_nearest_examples(
"embeddings", question_embedding, k=k
)
return scores, results