Ramon Meffert
Move env var to .env
f2e3e47
raw
history blame
2.91 kB
import os
import random
from typing import cast
import torch
import transformers
from datasets import DatasetDict, load_dataset
from dotenv import load_dotenv
from src.evaluation import evaluate
from src.readers.dpr_reader import DprReader
from src.retrievers.es_retriever import ESRetriever
from src.retrievers.faiss_retriever import FaissRetriever
from src.utils.log import get_logger
from src.utils.preprocessing import result_to_reader_input
logger = get_logger()
load_dotenv()
transformers.logging.set_verbosity_error()
if __name__ == '__main__':
dataset_name = "GroNLP/ik-nlp-22_slp"
paragraphs = load_dataset(dataset_name, "paragraphs")
questions = cast(DatasetDict, load_dataset(dataset_name, "questions"))
questions_test = questions["test"]
# logger.info(questions)
dataset_paragraphs = cast(DatasetDict, load_dataset(
"GroNLP/ik-nlp-22_slp", "paragraphs"))
# Initialize retriever
# retriever = FaissRetriever(dataset_paragraphs)
retriever = ESRetriever(dataset_paragraphs)
# Retrieve example
# random.seed(111)
random_index = random.randint(0, len(questions_test["question"])-1)
example_q = questions_test["question"][random_index]
example_a = questions_test["answer"][random_index]
scores, result = retriever.retrieve(example_q)
reader_input = result_to_reader_input(result)
# Initialize reader
reader = DprReader()
answers = reader.read(example_q, reader_input)
# Calculate softmaxed scores for readable output
sm = torch.nn.Softmax(dim=0)
document_scores = sm(torch.Tensor(
[pred.relevance_score for pred in answers]))
span_scores = sm(torch.Tensor(
[pred.span_score for pred in answers]))
print(example_q)
for answer_i, answer in enumerate(answers):
print(f"[{answer_i + 1}]: {answer.text}")
print(f"\tDocument {answer.doc_id}", end='')
print(f"\t(score {document_scores[answer_i] * 100:.02f})")
print(f"\tSpan {answer.start_index}-{answer.end_index}", end='')
print(f"\t(score {span_scores[answer_i] * 100:.02f})")
print() # Newline
# print(f"Example q: {example_q} answer: {result['text'][0]}")
# for i, score in enumerate(scores):
# print(f"Result {i+1} (score: {score:.02f}):")
# print(result['text'][i])
# Determine best answer we want to evaluate
highest, highest_index = 0, 0
for i, value in enumerate(span_scores):
if value + document_scores[i] > highest:
highest = value + document_scores[i]
highest_index = i
# Retrieve exact match and F1-score
exact_match, f1_score = evaluate(
example_a, answers[highest_index].text)
print(f"Gold answer: {example_a}\n"
f"Predicted answer: {answers[highest_index].text}\n"
f"Exact match: {exact_match:.02f}\n"
f"F1-score: {f1_score:.02f}")