Robert
- Remove useless paragraphs that only contain formulas
b7158e7
raw
history blame
4.2 kB
import os
import random
from typing import cast
import time
import torch
import transformers
from datasets import DatasetDict, load_dataset
from dotenv import load_dotenv
from src.evaluation import evaluate
from src.readers.dpr_reader import DprReader
from src.retrievers.es_retriever import ESRetriever
from src.retrievers.faiss_retriever import FaissRetriever
from src.utils.log import get_logger
from src.utils.preprocessing import result_to_reader_input
logger = get_logger()
load_dotenv()
transformers.logging.set_verbosity_error()
if __name__ == '__main__':
dataset_name = "GroNLP/ik-nlp-22_slp"
paragraphs = load_dataset(dataset_name, "paragraphs")
questions = cast(DatasetDict, load_dataset(dataset_name, "questions"))
questions_test = questions["test"]
# logger.info(questions)
dataset_paragraphs = cast(DatasetDict, load_dataset(
"GroNLP/ik-nlp-22_slp", "paragraphs"))
# Initialize retriever
retriever = FaissRetriever(dataset_paragraphs)
#retriever = ESRetriever(dataset_paragraphs)
# Retrieve example
# random.seed(111)
random_index = random.randint(0, len(questions_test["question"])-1)
example_q = questions_test["question"][random_index]
example_a = questions_test["answer"][random_index]
scores, result = retriever.retrieve(example_q)
reader_input = result_to_reader_input(result)
# Initialize reader
reader = DprReader()
answers = reader.read(example_q, reader_input)
# Calculate softmaxed scores for readable output
sm = torch.nn.Softmax(dim=0)
document_scores = sm(torch.Tensor(
[pred.relevance_score for pred in answers]))
span_scores = sm(torch.Tensor(
[pred.span_score for pred in answers]))
print(example_q)
for answer_i, answer in enumerate(answers):
print(f"[{answer_i + 1}]: {answer.text}")
print(f"\tDocument {answer.doc_id}", end='')
print(f"\t(score {document_scores[answer_i] * 100:.02f})")
print(f"\tSpan {answer.start_index}-{answer.end_index}", end='')
print(f"\t(score {span_scores[answer_i] * 100:.02f})")
print() # Newline
# print(f"Example q: {example_q} answer: {result['text'][0]}")
# for i, score in enumerate(scores):
# print(f"Result {i+1} (score: {score:.02f}):")
# print(result['text'][i])
# Determine best answer we want to evaluate
highest, highest_index = 0, 0
for i, value in enumerate(span_scores):
if value + document_scores[i] > highest:
highest = value + document_scores[i]
highest_index = i
# Retrieve exact match and F1-score
exact_match, f1_score = evaluate(
example_a, answers[highest_index].text)
print(f"Gold answer: {example_a}\n"
f"Predicted answer: {answers[highest_index].text}\n"
f"Exact match: {exact_match:.02f}\n"
f"F1-score: {f1_score:.02f}")
# Calculate overall performance
# total_f1 = 0
# total_exact = 0
# total_len = len(questions_test["question"])
# start_time = time.time()
# for i, question in enumerate(questions_test["question"]):
# print(question)
# answer = questions_test["answer"][i]
# print(answer)
#
# scores, result = retriever.retrieve(question)
# reader_input = result_to_reader_input(result)
# answers = reader.read(question, reader_input)
#
# document_scores = sm(torch.Tensor(
# [pred.relevance_score for pred in answers]))
# span_scores = sm(torch.Tensor(
# [pred.span_score for pred in answers]))
#
# highest, highest_index = 0, 0
# for j, value in enumerate(span_scores):
# if value + document_scores[j] > highest:
# highest = value + document_scores[j]
# highest_index = j
# print(answers[highest_index])
# exact_match, f1_score = evaluate(answer, answers[highest_index].text)
# total_f1 += f1_score
# total_exact += exact_match
# print(f"Total time:", round(time.time() - start_time, 2), "seconds.")
# print(total_f1)
# print(total_exact)
# print(total_f1/total_len)