GGroenendaal's picture
add gradio probe demo
325e3c6
raw
history blame
4.21 kB
import os
import random
from typing import cast
import time
import torch
import transformers
from datasets import DatasetDict, load_dataset
from dotenv import load_dotenv
from src.evaluation import evaluate
from src.readers.dpr_reader import DprReader
from src.retrievers.es_retriever import ESRetriever
from src.retrievers.faiss_retriever import FaissRetriever
from src.utils.log import get_logger
from src.utils.preprocessing import context_to_reader_input
logger = get_logger()
load_dotenv()
transformers.logging.set_verbosity_error()
if __name__ == '__main__':
dataset_name = "GroNLP/ik-nlp-22_slp"
paragraphs = load_dataset(dataset_name, "paragraphs")
questions = cast(DatasetDict, load_dataset(dataset_name, "questions"))
questions_test = questions["test"]
# logger.info(questions)
dataset_paragraphs = cast(DatasetDict, load_dataset(
"GroNLP/ik-nlp-22_slp", "paragraphs"))
# Initialize retriever
retriever = FaissRetriever(dataset_paragraphs)
#retriever = ESRetriever(dataset_paragraphs)
# Retrieve example
# random.seed(111)
random_index = random.randint(0, len(questions_test["question"])-1)
example_q = questions_test["question"][random_index]
example_a = questions_test["answer"][random_index]
scores, result = retriever.retrieve(example_q)
reader_input = context_to_reader_input(result)
# Initialize reader
reader = DprReader()
answers = reader.read(example_q, reader_input)
# Calculate softmaxed scores for readable output
sm = torch.nn.Softmax(dim=0)
document_scores = sm(torch.Tensor(
[pred.relevance_score for pred in answers]))
span_scores = sm(torch.Tensor(
[pred.span_score for pred in answers]))
print(example_q)
for answer_i, answer in enumerate(answers):
print(f"[{answer_i + 1}]: {answer.text}")
print(f"\tDocument {answer.doc_id}", end='')
print(f"\t(score {document_scores[answer_i] * 100:.02f})")
print(f"\tSpan {answer.start_index}-{answer.end_index}", end='')
print(f"\t(score {span_scores[answer_i] * 100:.02f})")
print() # Newline
# print(f"Example q: {example_q} answer: {result['text'][0]}")
# for i, score in enumerate(scores):
# print(f"Result {i+1} (score: {score:.02f}):")
# print(result['text'][i])
# Determine best answer we want to evaluate
highest, highest_index = 0, 0
for i, value in enumerate(span_scores):
if value + document_scores[i] > highest:
highest = value + document_scores[i]
highest_index = i
# Retrieve exact match and F1-score
exact_match, f1_score = evaluate(
example_a, answers[highest_index].text)
print(f"Gold answer: {example_a}\n"
f"Predicted answer: {answers[highest_index].text}\n"
f"Exact match: {exact_match:.02f}\n"
f"F1-score: {f1_score:.02f}")
# Calculate overall performance
# total_f1 = 0
# total_exact = 0
# total_len = len(questions_test["question"])
# start_time = time.time()
# for i, question in enumerate(questions_test["question"]):
# print(question)
# answer = questions_test["answer"][i]
# print(answer)
#
# scores, result = retriever.retrieve(question)
# reader_input = result_to_reader_input(result)
# answers = reader.read(question, reader_input)
#
# document_scores = sm(torch.Tensor(
# [pred.relevance_score for pred in answers]))
# span_scores = sm(torch.Tensor(
# [pred.span_score for pred in answers]))
#
# highest, highest_index = 0, 0
# for j, value in enumerate(span_scores):
# if value + document_scores[j] > highest:
# highest = value + document_scores[j]
# highest_index = j
# print(answers[highest_index])
# exact_match, f1_score = evaluate(answer, answers[highest_index].text)
# total_f1 += f1_score
# total_exact += exact_match
# print(f"Total time:", round(time.time() - start_time, 2), "seconds.")
# print(total_f1)
# print(total_exact)
# print(total_f1/total_len)