File size: 2,602 Bytes
ed41af7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import os
import sys
import cv2
import numpy as np

class Perspective:
    def __init__(self, img_name , FOV, THETA, PHI ):
        if isinstance(img_name, str):
            self._img = cv2.imread(img_name, cv2.IMREAD_COLOR)
        else:
            self._img = img_name
        [self._height, self._width, _] = self._img.shape
        self.wFOV = FOV
        self.THETA = THETA
        self.PHI = PHI
        self.hFOV = float(self._height) / self._width * FOV

        self.w_len = np.tan(np.radians(self.wFOV / 2.0))
        self.h_len = np.tan(np.radians(self.hFOV / 2.0))

    

    def GetEquirec(self,height,width):
        #
        # THETA is left/right angle, PHI is up/down angle, both in degree
        #

        x,y = np.meshgrid(np.linspace(-180, 180,width),np.linspace(90,-90,height))
        
        x_map = np.cos(np.radians(x)) * np.cos(np.radians(y))
        y_map = np.sin(np.radians(x)) * np.cos(np.radians(y))
        z_map = np.sin(np.radians(y))

        xyz = np.stack((x_map,y_map,z_map),axis=2)

        y_axis = np.array([0.0, 1.0, 0.0], np.float32)
        z_axis = np.array([0.0, 0.0, 1.0], np.float32)
        [R1, _] = cv2.Rodrigues(z_axis * np.radians(self.THETA))
        [R2, _] = cv2.Rodrigues(np.dot(R1, y_axis) * np.radians(-self.PHI))

        R1 = np.linalg.inv(R1)
        R2 = np.linalg.inv(R2)

        xyz = xyz.reshape([height * width, 3]).T
        xyz = np.dot(R2, xyz)
        xyz = np.dot(R1, xyz).T

        xyz = xyz.reshape([height , width, 3])
        inverse_mask = np.where(xyz[:,:,0]>0,1,0)

        xyz[:,:] = xyz[:,:]/np.repeat(xyz[:,:,0][:, :, np.newaxis], 3, axis=2)
        
        
        lon_map = np.where((-self.w_len<xyz[:,:,1])&(xyz[:,:,1]<self.w_len)&(-self.h_len<xyz[:,:,2])
                    &(xyz[:,:,2]<self.h_len),(xyz[:,:,1]+self.w_len)/2/self.w_len*self._width,0)
        lat_map = np.where((-self.w_len<xyz[:,:,1])&(xyz[:,:,1]<self.w_len)&(-self.h_len<xyz[:,:,2])
                    &(xyz[:,:,2]<self.h_len),(-xyz[:,:,2]+self.h_len)/2/self.h_len*self._height,0)
        mask = np.where((-self.w_len<xyz[:,:,1])&(xyz[:,:,1]<self.w_len)&(-self.h_len<xyz[:,:,2])
                    &(xyz[:,:,2]<self.h_len),1,0)

        persp = cv2.remap(self._img, lon_map.astype(np.float32), lat_map.astype(np.float32), cv2.INTER_CUBIC, borderMode=cv2.BORDER_WRAP)
        
        mask = mask * inverse_mask
        mask = np.repeat(mask[:, :, np.newaxis], 3, axis=2)
        persp = persp * mask
        
        
        return persp , mask