Spaces:
Running
on
A10G
Running
on
A10G
import os | |
import torch | |
import fire | |
import gradio as gr | |
from PIL import Image | |
from functools import partial | |
import spaces | |
import cv2 | |
import time | |
import numpy as np | |
from rembg import remove | |
from segment_anything import sam_model_registry, SamPredictor | |
import os | |
import torch | |
from PIL import Image | |
from typing import Dict, Optional, List | |
from dataclasses import dataclass | |
from mvdiffusion.data.single_image_dataset import SingleImageDataset | |
from mvdiffusion.pipelines.pipeline_mvdiffusion_unclip import StableUnCLIPImg2ImgPipeline | |
from einops import rearrange | |
import numpy as np | |
import subprocess | |
from datetime import datetime | |
from icecream import ic | |
def save_image(tensor): | |
ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() | |
# pdb.set_trace() | |
im = Image.fromarray(ndarr) | |
return ndarr | |
def save_image_to_disk(tensor, fp): | |
ndarr = tensor.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to("cpu", torch.uint8).numpy() | |
# pdb.set_trace() | |
im = Image.fromarray(ndarr) | |
im.save(fp) | |
return ndarr | |
def save_image_numpy(ndarr, fp): | |
im = Image.fromarray(ndarr) | |
im.save(fp) | |
weight_dtype = torch.float16 | |
_TITLE = '''Era3D: High-Resolution Multiview Diffusion using Efficient Row-wise Attention''' | |
_DESCRIPTION = ''' | |
<div> | |
Generate consistent high-resolution multi-view normals maps and color images. | |
</div> | |
<div> | |
The demo does not include the mesh reconstruction part, please visit <a href="https://github.com/pengHTYX/Era3D"><img src='https://img.shields.io/github/stars/pengHTYX/Era3D?style=social' style="display: inline-block; vertical-align: middle;"/></a> to get a textured mesh. | |
</div> | |
''' | |
_GPU_ID = 0 | |
if not hasattr(Image, 'Resampling'): | |
Image.Resampling = Image | |
def sam_init(): | |
sam_checkpoint = os.path.join(os.path.dirname(__file__), "sam_pt", "sam_vit_h_4b8939.pth") | |
model_type = "vit_h" | |
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint).to(device=f"cuda:{_GPU_ID}") | |
predictor = SamPredictor(sam) | |
return predictor | |
def sam_segment(predictor, input_image, *bbox_coords): | |
bbox = np.array(bbox_coords) | |
image = np.asarray(input_image) | |
start_time = time.time() | |
predictor.set_image(image) | |
masks_bbox, scores_bbox, logits_bbox = predictor.predict(box=bbox, multimask_output=True) | |
print(f"SAM Time: {time.time() - start_time:.3f}s") | |
out_image = np.zeros((image.shape[0], image.shape[1], 4), dtype=np.uint8) | |
out_image[:, :, :3] = image | |
out_image_bbox = out_image.copy() | |
out_image_bbox[:, :, 3] = masks_bbox[-1].astype(np.uint8) * 255 | |
torch.cuda.empty_cache() | |
return Image.fromarray(out_image_bbox, mode='RGBA') | |
def expand2square(pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
def preprocess(predictor, input_image, chk_group=None, segment=True, rescale=False): | |
RES = 1024 | |
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS) | |
if chk_group is not None: | |
segment = "Background Removal" in chk_group | |
rescale = "Rescale" in chk_group | |
if segment: | |
image_rem = input_image.convert('RGBA') | |
image_nobg = remove(image_rem, alpha_matting=True) | |
arr = np.asarray(image_nobg)[:, :, -1] | |
x_nonzero = np.nonzero(arr.sum(axis=0)) | |
y_nonzero = np.nonzero(arr.sum(axis=1)) | |
x_min = int(x_nonzero[0].min()) | |
y_min = int(y_nonzero[0].min()) | |
x_max = int(x_nonzero[0].max()) | |
y_max = int(y_nonzero[0].max()) | |
input_image = sam_segment(predictor, input_image.convert('RGB'), x_min, y_min, x_max, y_max) | |
# Rescale and recenter | |
if rescale: | |
image_arr = np.array(input_image) | |
in_w, in_h = image_arr.shape[:2] | |
out_res = min(RES, max(in_w, in_h)) | |
ret, mask = cv2.threshold(np.array(input_image.split()[-1]), 0, 255, cv2.THRESH_BINARY) | |
x, y, w, h = cv2.boundingRect(mask) | |
max_size = max(w, h) | |
ratio = 0.75 | |
side_len = int(max_size / ratio) | |
padded_image = np.zeros((side_len, side_len, 4), dtype=np.uint8) | |
center = side_len // 2 | |
padded_image[center - h // 2 : center - h // 2 + h, center - w // 2 : center - w // 2 + w] = image_arr[y : y + h, x : x + w] | |
rgba = Image.fromarray(padded_image).resize((out_res, out_res), Image.LANCZOS) | |
rgba_arr = np.array(rgba) / 255.0 | |
rgb = rgba_arr[..., :3] * rgba_arr[..., -1:] + (1 - rgba_arr[..., -1:]) | |
input_image = Image.fromarray((rgb * 255).astype(np.uint8)) | |
else: | |
input_image = expand2square(input_image, (127, 127, 127, 0)) | |
return input_image, input_image.resize((320, 320), Image.Resampling.LANCZOS) | |
def load_era3d_pipeline(cfg): | |
# Load scheduler, tokenizer and models. | |
pipeline = StableUnCLIPImg2ImgPipeline.from_pretrained( | |
cfg.pretrained_model_name_or_path, | |
torch_dtype=weight_dtype | |
) | |
# sys.main_lock = threading.Lock() | |
return pipeline | |
from mvdiffusion.data.single_image_dataset import SingleImageDataset | |
def prepare_data(single_image, crop_size, cfg): | |
dataset = SingleImageDataset(root_dir='', num_views=6, img_wh=[512, 512], bg_color='white', | |
crop_size=crop_size, single_image=single_image, prompt_embeds_path=cfg.validation_dataset.prompt_embeds_path) | |
return dataset[0] | |
scene = 'scene' | |
def run_pipeline(pipeline, cfg, single_image, guidance_scale, steps, seed, crop_size, chk_group=None): | |
pipeline.to(device=f'cuda:{_GPU_ID}') | |
pipeline.unet.enable_xformers_memory_efficient_attention() | |
global scene | |
# pdb.set_trace() | |
if chk_group is not None: | |
write_image = "Write Results" in chk_group | |
batch = prepare_data(single_image, crop_size, cfg) | |
pipeline.set_progress_bar_config(disable=True) | |
seed = int(seed) | |
generator = torch.Generator(device=pipeline.unet.device).manual_seed(seed) | |
imgs_in = torch.cat([batch['imgs_in']]*2, dim=0) | |
num_views = imgs_in.shape[1] | |
imgs_in = rearrange(imgs_in, "B Nv C H W -> (B Nv) C H W")# (B*Nv, 3, H, W) | |
normal_prompt_embeddings, clr_prompt_embeddings = batch['normal_prompt_embeddings'], batch['color_prompt_embeddings'] | |
prompt_embeddings = torch.cat([normal_prompt_embeddings, clr_prompt_embeddings], dim=0) | |
prompt_embeddings = rearrange(prompt_embeddings, "B Nv N C -> (B Nv) N C") | |
imgs_in = imgs_in.to(device=f'cuda:{_GPU_ID}', dtype=weight_dtype) | |
prompt_embeddings = prompt_embeddings.to(device=f'cuda:{_GPU_ID}', dtype=weight_dtype) | |
out = pipeline( | |
imgs_in, | |
None, | |
prompt_embeds=prompt_embeddings, | |
generator=generator, | |
guidance_scale=guidance_scale, | |
output_type='pt', | |
num_images_per_prompt=1, | |
# return_elevation_focal=cfg.log_elevation_focal_length, | |
**cfg.pipe_validation_kwargs | |
).images | |
bsz = out.shape[0] // 2 | |
normals_pred = out[:bsz] | |
images_pred = out[bsz:] | |
num_views = 6 | |
if write_image: | |
VIEWS = ['front', 'front_right', 'right', 'back', 'left', 'front_left'] | |
cur_dir = os.path.join(cfg.save_dir, f"cropsize-{int(crop_size)}-cfg{guidance_scale:.1f}") | |
scene = 'scene'+datetime.now().strftime('@%Y%m%d-%H%M%S') | |
scene_dir = os.path.join(cur_dir, scene) | |
os.makedirs(scene_dir, exist_ok=True) | |
for j in range(num_views): | |
view = VIEWS[j] | |
normal = normals_pred[j] | |
color = images_pred[j] | |
normal_filename = f"normals_{view}_masked.png" | |
color_filename = f"color_{view}_masked.png" | |
normal = save_image_to_disk(normal, os.path.join(scene_dir, normal_filename)) | |
color = save_image_to_disk(color, os.path.join(scene_dir, color_filename)) | |
normals_pred = [save_image(normals_pred[i]) for i in range(bsz)] | |
images_pred = [save_image(images_pred[i]) for i in range(bsz)] | |
out = images_pred + normals_pred | |
return images_pred, normals_pred | |
def process_3d(mode, data_dir, guidance_scale, crop_size): | |
dir = None | |
global scene | |
cur_dir = os.path.dirname(os.path.abspath(__file__)) | |
subprocess.run( | |
f'cd instant-nsr-pl && bash run.sh 0 {scene} exp_demo && cd ..', | |
shell=True, | |
) | |
import glob | |
obj_files = glob.glob(f'{cur_dir}/instant-nsr-pl/exp_demo/{scene}/*/save/*.obj', recursive=True) | |
print(obj_files) | |
if obj_files: | |
dir = obj_files[0] | |
return dir | |
class TestConfig: | |
pretrained_model_name_or_path: str | |
pretrained_unet_path:Optional[str] | |
revision: Optional[str] | |
validation_dataset: Dict | |
save_dir: str | |
seed: Optional[int] | |
validation_batch_size: int | |
dataloader_num_workers: int | |
# save_single_views: bool | |
save_mode: str | |
local_rank: int | |
pipe_kwargs: Dict | |
pipe_validation_kwargs: Dict | |
unet_from_pretrained_kwargs: Dict | |
validation_guidance_scales: List[float] | |
validation_grid_nrow: int | |
camera_embedding_lr_mult: float | |
num_views: int | |
camera_embedding_type: str | |
pred_type: str # joint, or ablation | |
regress_elevation: bool | |
enable_xformers_memory_efficient_attention: bool | |
cond_on_normals: bool | |
cond_on_colors: bool | |
regress_elevation: bool | |
regress_focal_length: bool | |
def run_demo(): | |
from utils.misc import load_config | |
from omegaconf import OmegaConf | |
# parse YAML config to OmegaConf | |
cfg = load_config("./configs/test_unclip-512-6view.yaml") | |
# print(cfg) | |
schema = OmegaConf.structured(TestConfig) | |
cfg = OmegaConf.merge(schema, cfg) | |
pipeline = load_era3d_pipeline(cfg) | |
torch.set_grad_enabled(False) | |
predictor = sam_init() | |
custom_theme = gr.themes.Soft(primary_hue="blue").set( | |
button_secondary_background_fill="*neutral_100", button_secondary_background_fill_hover="*neutral_200" | |
) | |
custom_css = '''#disp_image { | |
text-align: center; /* Horizontally center the content */ | |
}''' | |
with gr.Blocks(title=_TITLE, theme=custom_theme, css=custom_css) as demo: | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown('# ' + _TITLE) | |
gr.Markdown(_DESCRIPTION) | |
with gr.Row(variant='panel'): | |
with gr.Column(scale=1): | |
input_image = gr.Image(type='pil', image_mode='RGBA', height=320, label='Input image') | |
with gr.Column(scale=1): | |
processed_image_highres = gr.Image(type='pil', image_mode='RGBA', visible=False) | |
processed_image = gr.Image( | |
type='pil', | |
label="Processed Image", | |
interactive=False, | |
# height=320, | |
image_mode='RGBA', | |
elem_id="disp_image", | |
visible=True, | |
) | |
# with gr.Column(scale=1): | |
# ## add 3D Model | |
# obj_3d = gr.Model3D( | |
# # clear_color=[0.0, 0.0, 0.0, 0.0], | |
# label="3D Model", height=320, | |
# # camera_position=[0,0,2.0] | |
# ) | |
with gr.Row(variant='panel'): | |
with gr.Column(scale=1): | |
example_folder = os.path.join(os.path.dirname(__file__), "./examples") | |
example_fns = [os.path.join(example_folder, example) for example in os.listdir(example_folder)] | |
gr.Examples( | |
examples=example_fns, | |
inputs=[input_image], | |
outputs=[input_image], | |
cache_examples=False, | |
label='Examples (click one of the images below to start)', | |
examples_per_page=30, | |
) | |
with gr.Column(scale=1): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Accordion('Advanced options', open=True): | |
input_processing = gr.CheckboxGroup( | |
['Background Removal'], | |
label='Input Image Preprocessing', | |
value=['Background Removal'], | |
info='untick this, if masked image with alpha channel', | |
) | |
with gr.Column(): | |
with gr.Accordion('Advanced options', open=False): | |
output_processing = gr.CheckboxGroup( | |
['Write Results'], label='write the results in mv_res folder', value=['Write Results'] | |
) | |
with gr.Row(): | |
with gr.Column(): | |
scale_slider = gr.Slider(1, 5, value=3, step=1, label='Classifier Free Guidance Scale') | |
with gr.Column(): | |
steps_slider = gr.Slider(15, 100, value=40, step=1, label='Number of Diffusion Inference Steps') | |
with gr.Row(): | |
with gr.Column(): | |
seed = gr.Number(600, label='Seed', info='100 for digital portraits') | |
with gr.Column(): | |
crop_size = gr.Number(420, label='Crop size', info='380 for digital portraits') | |
mode = gr.Textbox('train', visible=False) | |
data_dir = gr.Textbox('outputs', visible=False) | |
# with gr.Row(): | |
# method = gr.Radio(choices=['instant-nsr-pl', 'NeuS'], label='Method (Default: instant-nsr-pl)', value='instant-nsr-pl') | |
run_btn = gr.Button('Generate Normals and Colors', variant='primary', interactive=True) | |
# recon_btn = gr.Button('Reconstruct 3D model', variant='primary', interactive=True) | |
# gr.Markdown("<span style='color:red'>First click Generate button, then click Reconstruct button. Reconstruction may cost several minutes.</span>") | |
with gr.Row(): | |
view_gallery = gr.Gallery(label='Multiview Images') | |
normal_gallery = gr.Gallery(label='Multiview Normals') | |
print('Launching...') | |
run_btn.click( | |
fn=partial(preprocess, predictor), inputs=[input_image, input_processing], outputs=[processed_image_highres, processed_image], queue=True | |
).success( | |
fn=partial(run_pipeline, pipeline, cfg), | |
inputs=[processed_image_highres, scale_slider, steps_slider, seed, crop_size, output_processing], | |
outputs=[view_gallery, normal_gallery], | |
) | |
# recon_btn.click( | |
# process_3d, inputs=[mode, data_dir, scale_slider, crop_size], outputs=[obj_3d] | |
# ) | |
demo.queue().launch(share=True, max_threads=80) | |
if __name__ == '__main__': | |
fire.Fire(run_demo) |