Update app.py
Browse filesPseudocode
Add sliders for resolution and num_gauss to the Gradio interface.
Modify the preprocess function to accept resolution as a parameter.
Modify the reconstruct_and_export function to accept num_gauss as a parameter.
Update the Gradio interface to include the new sliders and pass their values to the respective functions
app.py
CHANGED
@@ -1,18 +1,3 @@
|
|
1 |
-
import sys
|
2 |
-
import spaces
|
3 |
-
sys.path.append("flash3d") # Add the flash3d directory to the system path for importing local modules
|
4 |
-
|
5 |
-
from omegaconf import OmegaConf
|
6 |
-
import gradio as gr
|
7 |
-
import torch
|
8 |
-
import torchvision.transforms as TT
|
9 |
-
import torchvision.transforms.functional as TTF
|
10 |
-
from huggingface_hub import hf_hub_download
|
11 |
-
import numpy as np
|
12 |
-
|
13 |
-
from networks.gaussian_predictor import GaussianPredictor
|
14 |
-
from util.vis3d import save_ply
|
15 |
-
|
16 |
def main():
|
17 |
print("[INFO] Starting main function...")
|
18 |
if torch.cuda.is_available():
|
@@ -32,12 +17,8 @@ def main():
|
|
32 |
|
33 |
print("[INFO] Initializing GaussianPredictor model...")
|
34 |
model = GaussianPredictor(cfg)
|
35 |
-
|
36 |
-
|
37 |
-
model.to(device)
|
38 |
-
except Exception as e:
|
39 |
-
print(f"[ERROR] Failed to set device: {e}")
|
40 |
-
raise
|
41 |
|
42 |
print("[INFO] Loading model weights...")
|
43 |
model.load_model(model_path)
|
@@ -52,31 +33,23 @@ def main():
|
|
52 |
raise gr.Error("No image uploaded!")
|
53 |
print("[INFO] Input image is valid.")
|
54 |
|
55 |
-
def preprocess(image,
|
56 |
print("[DEBUG] Preprocessing image...")
|
57 |
-
image = TTF.resize(image, (
|
58 |
-
pad_border_fn = TT.Pad((padding_value, padding_value))
|
59 |
image = pad_border_fn(image)
|
60 |
print("[INFO] Image preprocessing complete.")
|
61 |
return image
|
62 |
|
63 |
@spaces.GPU(duration=120)
|
64 |
-
def reconstruct_and_export(image, num_gauss
|
65 |
print("[DEBUG] Starting reconstruction and export...")
|
66 |
image = to_tensor(image).to(device).unsqueeze(0)
|
67 |
inputs = {("color_aug", 0, 0): image}
|
68 |
-
|
69 |
print("[INFO] Passing image through the model...")
|
70 |
outputs = model(inputs)
|
71 |
-
|
72 |
-
gauss_means = outputs[('gauss_means',0, 0)]
|
73 |
-
if gauss_means.shape[0] % num_gauss != 0:
|
74 |
-
raise ValueError(f"Shape mismatch: cannot divide axis of length {gauss_means.shape[0]} into chunks of {num_gauss}")
|
75 |
-
|
76 |
print(f"[INFO] Saving output to {ply_out_path}...")
|
77 |
-
save_ply(outputs, ply_out_path, num_gauss=num_gauss
|
78 |
print("[INFO] Reconstruction and export complete.")
|
79 |
-
|
80 |
return ply_out_path
|
81 |
|
82 |
ply_out_path = f'./mesh.ply'
|
@@ -94,15 +67,9 @@ def main():
|
|
94 |
with gr.Column(scale=1):
|
95 |
with gr.Row():
|
96 |
input_image = gr.Image(label="Input Image", image_mode="RGBA", sources="upload", type="pil", elem_id="content_image")
|
97 |
-
with gr.Row():
|
98 |
-
num_gauss = gr.Slider(minimum=1, maximum=20, step=1, label="Number of Gaussians per Pixel", value=10)
|
99 |
-
padding_value = gr.Slider(minimum=0, maximum=128, step=8, label="Padding Amount for Output Processing", value=32)
|
100 |
-
max_sh_degree = gr.Slider(minimum=1, maximum=10, step=1, label="Max SH Degree", value=1)
|
101 |
-
scaling_modifier = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, label="Scaling Modifier", value=1.0)
|
102 |
with gr.Row():
|
103 |
submit = gr.Button("Generate", elem_id="generate", variant="primary")
|
104 |
-
|
105 |
-
with gr.Row(variant="panel"):
|
106 |
gr.Examples(
|
107 |
examples=[
|
108 |
'./demo_examples/bedroom_01.png',
|
@@ -117,22 +84,23 @@ def main():
|
|
117 |
label="Examples",
|
118 |
examples_per_page=20,
|
119 |
)
|
120 |
-
|
121 |
with gr.Row():
|
122 |
processed_image = gr.Image(label="Processed Image", interactive=False)
|
123 |
-
|
124 |
with gr.Column(scale=2):
|
125 |
with gr.Row():
|
126 |
with gr.Tab("Reconstruction"):
|
127 |
output_model = gr.Model3D(height=512, label="Output Model", interactive=False)
|
|
|
|
|
|
|
128 |
|
129 |
submit.click(fn=check_input_image, inputs=[input_image]).success(
|
130 |
fn=preprocess,
|
131 |
-
inputs=[input_image,
|
132 |
outputs=[processed_image],
|
133 |
).success(
|
134 |
fn=reconstruct_and_export,
|
135 |
-
inputs=[processed_image, num_gauss
|
136 |
outputs=[output_model],
|
137 |
)
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
def main():
|
2 |
print("[INFO] Starting main function...")
|
3 |
if torch.cuda.is_available():
|
|
|
17 |
|
18 |
print("[INFO] Initializing GaussianPredictor model...")
|
19 |
model = GaussianPredictor(cfg)
|
20 |
+
device = torch.device(device)
|
21 |
+
model.to(device)
|
|
|
|
|
|
|
|
|
22 |
|
23 |
print("[INFO] Loading model weights...")
|
24 |
model.load_model(model_path)
|
|
|
33 |
raise gr.Error("No image uploaded!")
|
34 |
print("[INFO] Input image is valid.")
|
35 |
|
36 |
+
def preprocess(image, resolution):
|
37 |
print("[DEBUG] Preprocessing image...")
|
38 |
+
image = TTF.resize(image, (resolution, resolution), interpolation=TT.InterpolationMode.BICUBIC)
|
|
|
39 |
image = pad_border_fn(image)
|
40 |
print("[INFO] Image preprocessing complete.")
|
41 |
return image
|
42 |
|
43 |
@spaces.GPU(duration=120)
|
44 |
+
def reconstruct_and_export(image, num_gauss):
|
45 |
print("[DEBUG] Starting reconstruction and export...")
|
46 |
image = to_tensor(image).to(device).unsqueeze(0)
|
47 |
inputs = {("color_aug", 0, 0): image}
|
|
|
48 |
print("[INFO] Passing image through the model...")
|
49 |
outputs = model(inputs)
|
|
|
|
|
|
|
|
|
|
|
50 |
print(f"[INFO] Saving output to {ply_out_path}...")
|
51 |
+
save_ply(outputs, ply_out_path, num_gauss=num_gauss)
|
52 |
print("[INFO] Reconstruction and export complete.")
|
|
|
53 |
return ply_out_path
|
54 |
|
55 |
ply_out_path = f'./mesh.ply'
|
|
|
67 |
with gr.Column(scale=1):
|
68 |
with gr.Row():
|
69 |
input_image = gr.Image(label="Input Image", image_mode="RGBA", sources="upload", type="pil", elem_id="content_image")
|
|
|
|
|
|
|
|
|
|
|
70 |
with gr.Row():
|
71 |
submit = gr.Button("Generate", elem_id="generate", variant="primary")
|
72 |
+
with gr.Row(variant="panel"):
|
|
|
73 |
gr.Examples(
|
74 |
examples=[
|
75 |
'./demo_examples/bedroom_01.png',
|
|
|
84 |
label="Examples",
|
85 |
examples_per_page=20,
|
86 |
)
|
|
|
87 |
with gr.Row():
|
88 |
processed_image = gr.Image(label="Processed Image", interactive=False)
|
|
|
89 |
with gr.Column(scale=2):
|
90 |
with gr.Row():
|
91 |
with gr.Tab("Reconstruction"):
|
92 |
output_model = gr.Model3D(height=512, label="Output Model", interactive=False)
|
93 |
+
with gr.Row():
|
94 |
+
resolution = gr.Slider(minimum=256, maximum=1024, step=64, label="Image Resolution", value=cfg.dataset.height)
|
95 |
+
num_gauss = gr.Slider(minimum=1, maximum=10, step=1, label="Number of Gaussian Components", value=2)
|
96 |
|
97 |
submit.click(fn=check_input_image, inputs=[input_image]).success(
|
98 |
fn=preprocess,
|
99 |
+
inputs=[input_image, resolution],
|
100 |
outputs=[processed_image],
|
101 |
).success(
|
102 |
fn=reconstruct_and_export,
|
103 |
+
inputs=[processed_image, num_gauss],
|
104 |
outputs=[output_model],
|
105 |
)
|
106 |
|