Spaces:
Running
Running
hichem-abdellali
commited on
update the _compute function to use the seametrics library
Browse filesThe User Friendly Metrics have been migrated into the Seametrics library, providing enhanced control over the code and enabling testing capabilities.
- user-friendly-metrics.py +2 -216
user-friendly-metrics.py
CHANGED
@@ -20,6 +20,8 @@ from motmetrics.metrics import (events_to_df_map,
|
|
20 |
track_ratios)
|
21 |
import numpy as np
|
22 |
|
|
|
|
|
23 |
_CITATION = """\
|
24 |
@InProceedings{huggingface:module,
|
25 |
title = {A great new module},
|
@@ -97,219 +99,3 @@ class UserFriendlyMetrics(evaluate.Metric):
|
|
97 |
return calculate_from_payload(payload, max_iou, filters, recognition_thresholds, debug)
|
98 |
#return calculate(predictions, references, max_iou)
|
99 |
|
100 |
-
def recognition(track_ratios, th = 0.5):
|
101 |
-
"""Number of objects tracked for at least 20 percent of lifespan."""
|
102 |
-
return track_ratios[track_ratios >= th].count()
|
103 |
-
|
104 |
-
def num_gt_ids(df):
|
105 |
-
"""Number of unique gt ids."""
|
106 |
-
return df.full["OId"].dropna().unique().shape[0]
|
107 |
-
|
108 |
-
def calculate(predictions,
|
109 |
-
references,
|
110 |
-
max_iou: float = 0.5,
|
111 |
-
recognition_thresholds: list = [0.3, 0.5, 0.8]
|
112 |
-
):
|
113 |
-
|
114 |
-
"""Returns the scores"""
|
115 |
-
|
116 |
-
try:
|
117 |
-
np_predictions = np.array(predictions)
|
118 |
-
except:
|
119 |
-
raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
|
120 |
-
|
121 |
-
try:
|
122 |
-
np_references = np.array(references)
|
123 |
-
except:
|
124 |
-
raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")
|
125 |
-
|
126 |
-
if np_predictions.shape[1] != 7:
|
127 |
-
raise ValueError("The predictions should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height, confidence]")
|
128 |
-
if np_references.shape[1] != 6:
|
129 |
-
raise ValueError("The references should be a list of np.arrays in the format [frame number, object id, bb_left, bb_top, bb_width, bb_height]")
|
130 |
-
|
131 |
-
if np_predictions[:, 0].min() <= 0:
|
132 |
-
raise ValueError("The frame number in the predictions should be a positive integer")
|
133 |
-
if np_references[:, 0].min() <= 0:
|
134 |
-
raise ValueError("The frame number in the references should be a positive integer")
|
135 |
-
|
136 |
-
num_frames = int(max(np_references[:, 0].max(), np_predictions[:, 0].max()))
|
137 |
-
|
138 |
-
acc = mm.MOTAccumulator(auto_id=True)
|
139 |
-
for i in range(1, num_frames+1):
|
140 |
-
preds = np_predictions[np_predictions[:, 0] == i, 1:6]
|
141 |
-
refs = np_references[np_references[:, 0] == i, 1:6]
|
142 |
-
C = mm.distances.iou_matrix(refs[:,1:], preds[:,1:], max_iou = 1-max_iou) #motmetrics expects iou association threshold to be smaller for stricter association
|
143 |
-
acc.update(refs[:,0].astype('int').tolist(), preds[:,0].astype('int').tolist(), C)
|
144 |
-
|
145 |
-
mh = mm.metrics.create()
|
146 |
-
summary = mh.compute(acc, metrics=['num_misses', 'num_false_positives', 'num_detections']).to_dict()
|
147 |
-
|
148 |
-
df = events_to_df_map(acc.events)
|
149 |
-
tr_ratios = track_ratios(df, obj_frequencies(df))
|
150 |
-
unique_gt_ids = num_gt_ids(df)
|
151 |
-
|
152 |
-
namemap = {"num_misses": "fn",
|
153 |
-
"num_false_positives": "fp",
|
154 |
-
"num_detections": "tp"}
|
155 |
-
|
156 |
-
for key in list(summary.keys()):
|
157 |
-
if key in namemap:
|
158 |
-
summary[namemap[key]] = float(summary[key][0])
|
159 |
-
summary.pop(key)
|
160 |
-
else:
|
161 |
-
summary[key] = float(summary[key][0])
|
162 |
-
|
163 |
-
summary["num_gt_ids"] = unique_gt_ids
|
164 |
-
|
165 |
-
for th in recognition_thresholds:
|
166 |
-
recognized = recognition(tr_ratios, th)
|
167 |
-
summary[f'recognized_{th}'] = int(recognized)
|
168 |
-
|
169 |
-
return summary
|
170 |
-
|
171 |
-
def build_metrics_template(models, filters):
|
172 |
-
metrics_dict = {}
|
173 |
-
for model in models:
|
174 |
-
metrics_dict[model] = {}
|
175 |
-
metrics_dict[model]["all"] = {}
|
176 |
-
for filter, filter_ranges in filters.items():
|
177 |
-
metrics_dict[model][filter] = {}
|
178 |
-
for filter_range in filter_ranges:
|
179 |
-
filter_range_name = filter_range[0]
|
180 |
-
metrics_dict[model][filter][filter_range_name] = {}
|
181 |
-
return metrics_dict
|
182 |
-
|
183 |
-
|
184 |
-
def calculate_from_payload(payload: dict,
|
185 |
-
max_iou: float = 0.5,
|
186 |
-
filters = {},
|
187 |
-
recognition_thresholds = [0.3, 0.5, 0.8],
|
188 |
-
debug: bool = False):
|
189 |
-
|
190 |
-
if not isinstance(payload, dict):
|
191 |
-
try:
|
192 |
-
payload = payload.to_dict()
|
193 |
-
except Exception as e:
|
194 |
-
raise ValueError(
|
195 |
-
"The payload should be a dictionary or a compatible object"
|
196 |
-
) from e
|
197 |
-
gt_field_name = payload['gt_field_name']
|
198 |
-
models = payload['models']
|
199 |
-
sequence_list = payload['sequence_list']
|
200 |
-
|
201 |
-
if debug:
|
202 |
-
print("gt_field_name: ", gt_field_name)
|
203 |
-
print("models: ", models)
|
204 |
-
print("sequence_list: ", sequence_list)
|
205 |
-
|
206 |
-
metrics_per_sequence = {}
|
207 |
-
metrics_global = build_metrics_template(models, filters)
|
208 |
-
|
209 |
-
for sequence in sequence_list:
|
210 |
-
metrics_per_sequence[sequence] = {}
|
211 |
-
frames = payload['sequences'][sequence][gt_field_name]
|
212 |
-
|
213 |
-
all_formated_references = {"all": []}
|
214 |
-
for filter, filter_ranges in filters.items():
|
215 |
-
all_formated_references[filter] = {}
|
216 |
-
for filter_range in filter_ranges:
|
217 |
-
filter_range_name = filter_range[0]
|
218 |
-
all_formated_references[filter][filter_range_name] = []
|
219 |
-
|
220 |
-
for frame_id, frame in enumerate(frames):
|
221 |
-
for detection in frame:
|
222 |
-
index = detection['index']
|
223 |
-
x, y, w, h = detection['bounding_box']
|
224 |
-
all_formated_references["all"].append([frame_id+1, index, x, y, w, h])
|
225 |
-
|
226 |
-
for filter, filter_ranges in filters.items():
|
227 |
-
filter_value = detection[filter]
|
228 |
-
for filter_range in filter_ranges:
|
229 |
-
filter_range_name, filter_range_limits = filter_range[0], filter_range[1]
|
230 |
-
if filter_value >= filter_range_limits[0] and filter_value <= filter_range_limits[1]:
|
231 |
-
all_formated_references[filter][filter_range_name].append([frame_id+1, index, x, y, w, h])
|
232 |
-
|
233 |
-
metrics_per_sequence[sequence] = build_metrics_template(models, filters)
|
234 |
-
|
235 |
-
for model in models:
|
236 |
-
frames = payload['sequences'][sequence][model]
|
237 |
-
formated_predictions = []
|
238 |
-
|
239 |
-
for frame_id, frame in enumerate(frames):
|
240 |
-
for detection in frame:
|
241 |
-
index = detection['index']
|
242 |
-
x, y, w, h = detection['bounding_box']
|
243 |
-
confidence = 1
|
244 |
-
formated_predictions.append([frame_id+1, index, x, y, w, h, confidence])
|
245 |
-
|
246 |
-
if debug:
|
247 |
-
print("sequence/model: ", sequence, model)
|
248 |
-
print("formated_predictions: ", formated_predictions)
|
249 |
-
print("formated_references: ", all_formated_references)
|
250 |
-
|
251 |
-
if len(formated_predictions) == 0:
|
252 |
-
metrics_per_sequence[sequence][model] = "Model had no predictions."
|
253 |
-
elif len(all_formated_references["all"]) == 0:
|
254 |
-
metrics_per_sequence[sequence][model] = "No ground truth."
|
255 |
-
|
256 |
-
else:
|
257 |
-
|
258 |
-
sequence_metrics = calculate(formated_predictions, all_formated_references["all"], max_iou=max_iou, recognition_thresholds = recognition_thresholds)
|
259 |
-
sequence_metrics = realize_metrics(sequence_metrics, recognition_thresholds)
|
260 |
-
metrics_per_sequence[sequence][model]["all"] = sequence_metrics
|
261 |
-
|
262 |
-
metrics_global[model]["all"] = sum_dicts(metrics_global[model]["all"], sequence_metrics)
|
263 |
-
metrics_global[model]["all"] = realize_metrics(metrics_global[model]["all"], recognition_thresholds)
|
264 |
-
|
265 |
-
for filter, filter_ranges in filters.items():
|
266 |
-
|
267 |
-
for filter_range in filter_ranges:
|
268 |
-
|
269 |
-
filter_range_name = filter_range[0]
|
270 |
-
sequence_metrics = calculate(formated_predictions, all_formated_references[filter][filter_range_name], max_iou=max_iou, recognition_thresholds = recognition_thresholds)
|
271 |
-
sequence_metrics = realize_metrics(sequence_metrics, recognition_thresholds)
|
272 |
-
metrics_per_sequence[sequence][model][filter][filter_range_name] = sequence_metrics
|
273 |
-
|
274 |
-
metrics_global[model][filter][filter_range_name] = sum_dicts(metrics_global[model][filter][filter_range_name], sequence_metrics)
|
275 |
-
metrics_global[model][filter][filter_range_name] = realize_metrics(metrics_global[model][filter][filter_range_name], recognition_thresholds)
|
276 |
-
|
277 |
-
output = {"global": metrics_global, "per_sequence": metrics_per_sequence}
|
278 |
-
|
279 |
-
return output
|
280 |
-
|
281 |
-
def sum_dicts(dict1, dict2):
|
282 |
-
"""
|
283 |
-
Recursively sums the numerical values in two nested dictionaries.
|
284 |
-
"""
|
285 |
-
result = {}
|
286 |
-
for key in dict1.keys() | dict2.keys(): # Union of keys from both dictionaries
|
287 |
-
val1 = dict1.get(key, 0)
|
288 |
-
val2 = dict2.get(key, 0)
|
289 |
-
if isinstance(val1, dict) and isinstance(val2, dict):
|
290 |
-
# If both values are dictionaries, recursively sum them
|
291 |
-
result[key] = sum_dicts(val1, val2)
|
292 |
-
elif isinstance(val1, (int, float)) and isinstance(val2, (int, float)):
|
293 |
-
# If both are numbers, sum them
|
294 |
-
result[key] = val1 + val2
|
295 |
-
else:
|
296 |
-
# If only one dictionary has the key, take the non-zero value
|
297 |
-
result[key] = val1 if val1 != 0 else val2
|
298 |
-
return result
|
299 |
-
|
300 |
-
def realize_metrics(metrics_dict,
|
301 |
-
recognition_thresholds):
|
302 |
-
"""
|
303 |
-
calculates metrics based on raw metrics
|
304 |
-
"""
|
305 |
-
|
306 |
-
metrics_dict["precision"] = metrics_dict["tp"]/(metrics_dict["tp"]+metrics_dict["fp"])
|
307 |
-
metrics_dict["recall"] = metrics_dict["tp"]/(metrics_dict["tp"]+metrics_dict["fn"])
|
308 |
-
|
309 |
-
metrics_dict["f1"] = 2*metrics_dict["precision"]*metrics_dict["recall"]/(metrics_dict["precision"]+metrics_dict["recall"]+1e-6)
|
310 |
-
|
311 |
-
for th in recognition_thresholds:
|
312 |
-
metrics_dict[f"recognition_{th}"] = metrics_dict[f"recognized_{th}"]/metrics_dict["num_gt_ids"]
|
313 |
-
|
314 |
-
return metrics_dict
|
315 |
-
|
|
|
20 |
track_ratios)
|
21 |
import numpy as np
|
22 |
|
23 |
+
from seametrics.user_friendly.utils import calculate_from_payload
|
24 |
+
|
25 |
_CITATION = """\
|
26 |
@InProceedings{huggingface:module,
|
27 |
title = {A great new module},
|
|
|
99 |
return calculate_from_payload(payload, max_iou, filters, recognition_thresholds, debug)
|
100 |
#return calculate(predictions, references, max_iou)
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|