Spaces:
Running
Running
hichem-abdellali
commited on
update the user friendly metrics to logs into w&b
Browse filesthe user friendly metrics is updated to log into the w&b project user_friendly_metrics, it adds summary, logs and plots
- user-friendly-metrics.py +139 -24
user-friendly-metrics.py
CHANGED
@@ -12,16 +12,15 @@
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
|
15 |
-
import
|
16 |
-
import
|
17 |
-
import motmetrics as mm
|
18 |
-
from motmetrics.metrics import (events_to_df_map,
|
19 |
-
obj_frequencies,
|
20 |
-
track_ratios)
|
21 |
-
import numpy as np
|
22 |
|
|
|
|
|
23 |
from seametrics.user_friendly.utils import calculate_from_payload
|
24 |
|
|
|
|
|
25 |
_CITATION = """\
|
26 |
@InProceedings{huggingface:module,
|
27 |
title = {A great new module},
|
@@ -70,17 +69,19 @@ class UserFriendlyMetrics(evaluate.Metric):
|
|
70 |
citation=_CITATION,
|
71 |
inputs_description=_KWARGS_DESCRIPTION,
|
72 |
# This defines the format of each prediction and reference
|
73 |
-
features=datasets.Features(
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
|
|
|
|
81 |
# Additional links to the codebase or references
|
82 |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
83 |
-
reference_urls=["http://path.to.reference.url/new_module"]
|
84 |
)
|
85 |
|
86 |
def _download_and_prepare(self, dl_manager):
|
@@ -88,14 +89,128 @@ class UserFriendlyMetrics(evaluate.Metric):
|
|
88 |
# TODO: Download external resources if needed
|
89 |
pass
|
90 |
|
91 |
-
def _compute(
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
97 |
"""Returns the scores"""
|
98 |
# TODO: Compute the different scores of the module
|
99 |
-
return calculate_from_payload(
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
|
|
|
12 |
# See the License for the specific language governing permissions and
|
13 |
# limitations under the License.
|
14 |
|
15 |
+
import datetime
|
16 |
+
import os
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
import datasets
|
19 |
+
import evaluate
|
20 |
from seametrics.user_friendly.utils import calculate_from_payload
|
21 |
|
22 |
+
import wandb
|
23 |
+
|
24 |
_CITATION = """\
|
25 |
@InProceedings{huggingface:module,
|
26 |
title = {A great new module},
|
|
|
69 |
citation=_CITATION,
|
70 |
inputs_description=_KWARGS_DESCRIPTION,
|
71 |
# This defines the format of each prediction and reference
|
72 |
+
features=datasets.Features(
|
73 |
+
{
|
74 |
+
"predictions": datasets.Sequence(
|
75 |
+
datasets.Sequence(datasets.Value("float"))
|
76 |
+
),
|
77 |
+
"references": datasets.Sequence(
|
78 |
+
datasets.Sequence(datasets.Value("float"))
|
79 |
+
),
|
80 |
+
}
|
81 |
+
),
|
82 |
# Additional links to the codebase or references
|
83 |
codebase_urls=["http://github.com/path/to/codebase/of/new_module"],
|
84 |
+
reference_urls=["http://path.to.reference.url/new_module"],
|
85 |
)
|
86 |
|
87 |
def _download_and_prepare(self, dl_manager):
|
|
|
89 |
# TODO: Download external resources if needed
|
90 |
pass
|
91 |
|
92 |
+
def _compute(
|
93 |
+
self,
|
94 |
+
payload,
|
95 |
+
max_iou: float = 0.5,
|
96 |
+
filters={},
|
97 |
+
recognition_thresholds=[0.3, 0.5, 0.8],
|
98 |
+
debug: bool = False,
|
99 |
+
):
|
100 |
"""Returns the scores"""
|
101 |
# TODO: Compute the different scores of the module
|
102 |
+
return calculate_from_payload(
|
103 |
+
payload, max_iou, filters, recognition_thresholds, debug
|
104 |
+
)
|
105 |
+
# return calculate(predictions, references, max_iou)
|
106 |
+
|
107 |
+
def wandb(
|
108 |
+
self,
|
109 |
+
results,
|
110 |
+
wandb_section: str = None,
|
111 |
+
wandb_project="user_friendly_metrics",
|
112 |
+
log_plots: bool = True,
|
113 |
+
debug: bool = False,
|
114 |
+
):
|
115 |
+
"""
|
116 |
+
Logs metrics to Weights and Biases (wandb) for tracking and visualization, including categorized bar charts for global metrics.
|
117 |
+
|
118 |
+
Args:
|
119 |
+
results (dict): Results dictionary with 'global' and 'per_sequence' keys.
|
120 |
+
wandb_section (str, optional): W&B section for metric grouping. Defaults to None.
|
121 |
+
wandb_project (str, optional): The name of the wandb project. Defaults to 'user_friendly_metrics'.
|
122 |
+
log_plots (bool, optional): Generates categorized bar charts for global metrics. Defaults to True.
|
123 |
+
debug (bool, optional): Logs detailed summaries and histories to the terminal console. Defaults to False.
|
124 |
+
"""
|
125 |
+
|
126 |
+
current_datetime = datetime.datetime.now()
|
127 |
+
formatted_datetime = current_datetime.strftime("%Y-%m-%d_%H-%M-%S")
|
128 |
+
wandb.login(key=os.getenv("WANDB_API_KEY"))
|
129 |
+
|
130 |
+
run = wandb.init(
|
131 |
+
project=wandb_project,
|
132 |
+
name=f"evaluation-{formatted_datetime}",
|
133 |
+
reinit=True,
|
134 |
+
settings=wandb.Settings(silent=not debug),
|
135 |
+
)
|
136 |
+
|
137 |
+
categories = {
|
138 |
+
"confusion_metrics": {"fp", "tp", "fn"},
|
139 |
+
"evaluation_metrics": {"f1", "recall", "precision"},
|
140 |
+
"recognition_metrics": {
|
141 |
+
"recognition_0.3",
|
142 |
+
"recognition_0.5",
|
143 |
+
"recognition_0.8",
|
144 |
+
"recognized_0.3",
|
145 |
+
"recognized_0.5",
|
146 |
+
"recognized_0.8",
|
147 |
+
},
|
148 |
+
}
|
149 |
+
|
150 |
+
chart_data = {key: [] for key in categories.keys()}
|
151 |
+
|
152 |
+
# Log global metrics
|
153 |
+
if "global" in results:
|
154 |
+
for global_key, global_metrics in results["global"].items():
|
155 |
+
for metric, value in global_metrics["all"].items():
|
156 |
+
log_key = (
|
157 |
+
f"{wandb_section}/global/{global_key}/{metric}"
|
158 |
+
if wandb_section
|
159 |
+
else f"global/{global_key}/{metric}"
|
160 |
+
)
|
161 |
+
run.log({log_key: value})
|
162 |
+
|
163 |
+
if debug:
|
164 |
+
print(f"Logged to W&B: {log_key} = {value}")
|
165 |
+
|
166 |
+
for category, metrics in categories.items():
|
167 |
+
if metric in metrics:
|
168 |
+
chart_data[category].append([metric, value])
|
169 |
+
|
170 |
+
if log_plots:
|
171 |
+
for category, data in chart_data.items():
|
172 |
+
if data:
|
173 |
+
table_data = [[label, value] for label, value in data]
|
174 |
+
table = wandb.Table(data=table_data, columns=["metrics", "value"])
|
175 |
+
run.log(
|
176 |
+
{
|
177 |
+
f"{category}_bar_chart": wandb.plot.bar(
|
178 |
+
table,
|
179 |
+
"metrics",
|
180 |
+
"value",
|
181 |
+
title=f"{category.replace('_', ' ').title()}",
|
182 |
+
)
|
183 |
+
}
|
184 |
+
)
|
185 |
+
|
186 |
+
if "per_sequence" in results:
|
187 |
+
sorted_sequences = sorted(
|
188 |
+
results["per_sequence"].items(),
|
189 |
+
key=lambda x: x[1]
|
190 |
+
.get("evaluation_metrics", {})
|
191 |
+
.get("f1", {})
|
192 |
+
.get("all", 0),
|
193 |
+
reverse=True,
|
194 |
+
)
|
195 |
+
|
196 |
+
for sequence_name, sequence_data in sorted_sequences:
|
197 |
+
for seq_key, seq_metrics in sequence_data.items():
|
198 |
+
for metric, value in seq_metrics["all"].items():
|
199 |
+
log_key = (
|
200 |
+
f"{wandb_section}/per_sequence/{sequence_name}/{seq_key}/{metric}"
|
201 |
+
if wandb_section
|
202 |
+
else f"per_sequence/{sequence_name}/{seq_key}/{metric}"
|
203 |
+
)
|
204 |
+
run.log({log_key: value})
|
205 |
+
if debug:
|
206 |
+
print(
|
207 |
+
f"Logged to W&B: {sequence_name} -> {log_key} = {value}"
|
208 |
+
)
|
209 |
+
|
210 |
+
if debug:
|
211 |
+
print("\nDebug Mode: Logging Summary and History")
|
212 |
+
print(f"Results Summary:\n{results}")
|
213 |
+
print(f"WandB Settings:\n{run.settings}")
|
214 |
+
print("All metrics have been logged.")
|
215 |
|
216 |
+
run.finish()
|