#!/usr/bin/env python from __future__ import annotations import pathlib import gradio as gr import numpy as np from model import Model DESCRIPTION = "# [Self-Distilled StyleGAN](https://github.com/self-distilled-stylegan/self-distilled-internet-photos)" def get_sample_image_url(name: str) -> str: sample_image_dir = "https://huggingface.co/spaces/hysts/Self-Distilled-StyleGAN/resolve/main/samples" return f"{sample_image_dir}/{name}.jpg" def get_sample_image_markdown(name: str) -> str: url = get_sample_image_url(name) size = name.split("_")[1] truncation_type = "_".join(name.split("_")[2:]) return f""" - size: {size}x{size} - seed: 0-99 - truncation: 0.7 - truncation type: {truncation_type} ![sample images]({url})""" def get_cluster_center_image_url(model_name: str) -> str: cluster_center_image_dir = ( "https://huggingface.co/spaces/hysts/Self-Distilled-StyleGAN/resolve/main/cluster_center_images" ) return f"{cluster_center_image_dir}/{model_name}.jpg" def get_cluster_center_image_markdown(model_name: str) -> str: url = get_cluster_center_image_url(model_name) return f"![cluster center images]({url})" model = Model() with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) with gr.Tabs(): with gr.TabItem("App"): with gr.Row(): with gr.Column(): with gr.Group(): model_name = gr.Dropdown(label="Model", choices=model.MODEL_NAMES, value=model.MODEL_NAMES[0]) seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.uint32).max, step=1, value=0) psi = gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=0.7) truncation_type = gr.Dropdown( label="Truncation Type", choices=model.TRUNCATION_TYPES, value=model.TRUNCATION_TYPES[0] ) run_button = gr.Button("Run") with gr.Column(): result = gr.Image(label="Result", elem_id="result") with gr.TabItem("Sample Images"): with gr.Row(): paths = sorted(pathlib.Path("samples").glob("*")) names = [path.stem for path in paths] model_name2 = gr.Dropdown(label="Type", choices=names, value="dogs_1024_multimodal_lpips") with gr.Row(): text = get_sample_image_markdown(model_name2.value) sample_images = gr.Markdown(text) with gr.TabItem("Cluster Center Images"): with gr.Row(): model_name3 = gr.Dropdown(label="Model", choices=model.MODEL_NAMES, value=model.MODEL_NAMES[0]) with gr.Row(): text = get_cluster_center_image_markdown(model_name3.value) cluster_center_images = gr.Markdown(value=text) model_name.change( fn=model.set_model, inputs=model_name, ) run_button.click( fn=model.set_model_and_generate_image, inputs=[ model_name, seed, psi, truncation_type, ], outputs=result, ) model_name2.change( fn=get_sample_image_markdown, inputs=model_name2, outputs=sample_images, ) model_name3.change( fn=get_cluster_center_image_markdown, inputs=model_name3, outputs=cluster_center_images, ) if __name__ == "__main__": demo.queue(max_size=10).launch()