SUPERSHANKY hysts HF staff commited on
Commit
5a003c4
·
0 Parent(s):

Duplicate from hysts/ControlNet-with-other-models

Browse files

Co-authored-by: hysts <[email protected]>

.gitattributes ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ models/
2
+
3
+ # Byte-compiled / optimized / DLL files
4
+ __pycache__/
5
+ *.py[cod]
6
+ *$py.class
7
+
8
+ # C extensions
9
+ *.so
10
+
11
+ # Distribution / packaging
12
+ .Python
13
+ build/
14
+ develop-eggs/
15
+ dist/
16
+ downloads/
17
+ eggs/
18
+ .eggs/
19
+ lib/
20
+ lib64/
21
+ parts/
22
+ sdist/
23
+ var/
24
+ wheels/
25
+ share/python-wheels/
26
+ *.egg-info/
27
+ .installed.cfg
28
+ *.egg
29
+ MANIFEST
30
+
31
+ # PyInstaller
32
+ # Usually these files are written by a python script from a template
33
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
34
+ *.manifest
35
+ *.spec
36
+
37
+ # Installer logs
38
+ pip-log.txt
39
+ pip-delete-this-directory.txt
40
+
41
+ # Unit test / coverage reports
42
+ htmlcov/
43
+ .tox/
44
+ .nox/
45
+ .coverage
46
+ .coverage.*
47
+ .cache
48
+ nosetests.xml
49
+ coverage.xml
50
+ *.cover
51
+ *.py,cover
52
+ .hypothesis/
53
+ .pytest_cache/
54
+ cover/
55
+
56
+ # Translations
57
+ *.mo
58
+ *.pot
59
+
60
+ # Django stuff:
61
+ *.log
62
+ local_settings.py
63
+ db.sqlite3
64
+ db.sqlite3-journal
65
+
66
+ # Flask stuff:
67
+ instance/
68
+ .webassets-cache
69
+
70
+ # Scrapy stuff:
71
+ .scrapy
72
+
73
+ # Sphinx documentation
74
+ docs/_build/
75
+
76
+ # PyBuilder
77
+ .pybuilder/
78
+ target/
79
+
80
+ # Jupyter Notebook
81
+ .ipynb_checkpoints
82
+
83
+ # IPython
84
+ profile_default/
85
+ ipython_config.py
86
+
87
+ # pyenv
88
+ # For a library or package, you might want to ignore these files since the code is
89
+ # intended to run in multiple environments; otherwise, check them in:
90
+ # .python-version
91
+
92
+ # pipenv
93
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
94
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
95
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
96
+ # install all needed dependencies.
97
+ #Pipfile.lock
98
+
99
+ # poetry
100
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
101
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
102
+ # commonly ignored for libraries.
103
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
104
+ #poetry.lock
105
+
106
+ # pdm
107
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
108
+ #pdm.lock
109
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
110
+ # in version control.
111
+ # https://pdm.fming.dev/#use-with-ide
112
+ .pdm.toml
113
+
114
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
115
+ __pypackages__/
116
+
117
+ # Celery stuff
118
+ celerybeat-schedule
119
+ celerybeat.pid
120
+
121
+ # SageMath parsed files
122
+ *.sage.py
123
+
124
+ # Environments
125
+ .env
126
+ .venv
127
+ env/
128
+ venv/
129
+ ENV/
130
+ env.bak/
131
+ venv.bak/
132
+
133
+ # Spyder project settings
134
+ .spyderproject
135
+ .spyproject
136
+
137
+ # Rope project settings
138
+ .ropeproject
139
+
140
+ # mkdocs documentation
141
+ /site
142
+
143
+ # mypy
144
+ .mypy_cache/
145
+ .dmypy.json
146
+ dmypy.json
147
+
148
+ # Pyre type checker
149
+ .pyre/
150
+
151
+ # pytype static type analyzer
152
+ .pytype/
153
+
154
+ # Cython debug symbols
155
+ cython_debug/
156
+
157
+ # PyCharm
158
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
159
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
160
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
161
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
162
+ #.idea/
.gitmodules ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ [submodule "ControlNet"]
2
+ path = ControlNet
3
+ url = https://github.com/lllyasviel/ControlNet
.pre-commit-config.yaml ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ exclude: patch
2
+ repos:
3
+ - repo: https://github.com/pre-commit/pre-commit-hooks
4
+ rev: v4.2.0
5
+ hooks:
6
+ - id: check-executables-have-shebangs
7
+ - id: check-json
8
+ - id: check-merge-conflict
9
+ - id: check-shebang-scripts-are-executable
10
+ - id: check-toml
11
+ - id: check-yaml
12
+ - id: double-quote-string-fixer
13
+ - id: end-of-file-fixer
14
+ - id: mixed-line-ending
15
+ args: ['--fix=lf']
16
+ - id: requirements-txt-fixer
17
+ - id: trailing-whitespace
18
+ - repo: https://github.com/myint/docformatter
19
+ rev: v1.4
20
+ hooks:
21
+ - id: docformatter
22
+ args: ['--in-place']
23
+ - repo: https://github.com/pycqa/isort
24
+ rev: 5.12.0
25
+ hooks:
26
+ - id: isort
27
+ - repo: https://github.com/pre-commit/mirrors-mypy
28
+ rev: v0.991
29
+ hooks:
30
+ - id: mypy
31
+ args: ['--ignore-missing-imports']
32
+ additional_dependencies: ['types-python-slugify']
33
+ - repo: https://github.com/google/yapf
34
+ rev: v0.32.0
35
+ hooks:
36
+ - id: yapf
37
+ args: ['--parallel', '--in-place']
.style.yapf ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ [style]
2
+ based_on_style = pep8
3
+ blank_line_before_nested_class_or_def = false
4
+ spaces_before_comment = 2
5
+ split_before_logical_operator = true
ControlNet ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit f4748e3630d8141d7765e2bd9b1e348f47847707
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 hysts
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
LICENSE.ControlNet ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: ControlNet with other models
3
+ emoji: 😻
4
+ colorFrom: pink
5
+ colorTo: blue
6
+ sdk: gradio
7
+ sdk_version: 3.18.0
8
+ python_version: 3.10.9
9
+ app_file: app.py
10
+ pinned: false
11
+ license: mit
12
+ duplicated_from: hysts/ControlNet-with-other-models
13
+ ---
14
+
15
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ from __future__ import annotations
4
+
5
+ import os
6
+ import pathlib
7
+ import shlex
8
+ import subprocess
9
+
10
+ import gradio as gr
11
+
12
+ if os.getenv('SYSTEM') == 'spaces':
13
+ with open('patch') as f:
14
+ subprocess.run(shlex.split('patch -p1'), stdin=f, cwd='ControlNet')
15
+
16
+ base_url = 'https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/'
17
+ names = [
18
+ 'body_pose_model.pth',
19
+ 'dpt_hybrid-midas-501f0c75.pt',
20
+ 'hand_pose_model.pth',
21
+ 'mlsd_large_512_fp32.pth',
22
+ 'mlsd_tiny_512_fp32.pth',
23
+ 'network-bsds500.pth',
24
+ 'upernet_global_small.pth',
25
+ ]
26
+ for name in names:
27
+ command = f'wget https://huggingface.co/lllyasviel/ControlNet/resolve/main/annotator/ckpts/{name} -O {name}'
28
+ out_path = pathlib.Path(f'ControlNet/annotator/ckpts/{name}')
29
+ if out_path.exists():
30
+ continue
31
+ subprocess.run(shlex.split(command), cwd='ControlNet/annotator/ckpts/')
32
+
33
+ from gradio_canny2image import create_demo as create_demo_canny
34
+ from gradio_depth2image import create_demo as create_demo_depth
35
+ from gradio_fake_scribble2image import create_demo as create_demo_fake_scribble
36
+ from gradio_hed2image import create_demo as create_demo_hed
37
+ from gradio_hough2image import create_demo as create_demo_hough
38
+ from gradio_normal2image import create_demo as create_demo_normal
39
+ from gradio_pose2image import create_demo as create_demo_pose
40
+ from gradio_scribble2image import create_demo as create_demo_scribble
41
+ from gradio_scribble2image_interactive import \
42
+ create_demo as create_demo_scribble_interactive
43
+ from gradio_seg2image import create_demo as create_demo_seg
44
+ from model import (DEFAULT_BASE_MODEL_FILENAME, DEFAULT_BASE_MODEL_REPO,
45
+ DEFAULT_BASE_MODEL_URL, Model)
46
+
47
+ MAX_IMAGES = 1
48
+ DESCRIPTION = '''# [ControlNet](https://github.com/lllyasviel/ControlNet)
49
+
50
+ This Space is a modified version of [this Space](https://huggingface.co/spaces/hysts/ControlNet).
51
+ The original Space uses [Stable Diffusion v1.5](https://huggingface.co/runwayml/stable-diffusion-v1-5) as the base model, but [Anything v4.0](https://huggingface.co/andite/anything-v4.0) is used in this Space.
52
+ '''
53
+
54
+ SPACE_ID = os.getenv('SPACE_ID')
55
+ ALLOW_CHANGING_BASE_MODEL = SPACE_ID != 'hysts/ControlNet-with-other-models'
56
+
57
+ if not ALLOW_CHANGING_BASE_MODEL:
58
+ DESCRIPTION += 'In this Space, the base model is not allowed to be changed so as not to slow down the demo, but it can be changed if you duplicate the Space.'
59
+
60
+ if SPACE_ID is not None:
61
+ DESCRIPTION += f'''<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.<br/>
62
+ <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true">
63
+ <img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
64
+ <p/>
65
+ '''
66
+
67
+ model = Model()
68
+
69
+ with gr.Blocks(css='style.css') as demo:
70
+ gr.Markdown(DESCRIPTION)
71
+
72
+ with gr.Tabs():
73
+ with gr.TabItem('Canny'):
74
+ create_demo_canny(model.process_canny, max_images=MAX_IMAGES)
75
+ with gr.TabItem('Hough'):
76
+ create_demo_hough(model.process_hough, max_images=MAX_IMAGES)
77
+ with gr.TabItem('HED'):
78
+ create_demo_hed(model.process_hed, max_images=MAX_IMAGES)
79
+ with gr.TabItem('Scribble'):
80
+ create_demo_scribble(model.process_scribble, max_images=MAX_IMAGES)
81
+ with gr.TabItem('Scribble Interactive'):
82
+ create_demo_scribble_interactive(
83
+ model.process_scribble_interactive, max_images=MAX_IMAGES)
84
+ with gr.TabItem('Fake Scribble'):
85
+ create_demo_fake_scribble(model.process_fake_scribble,
86
+ max_images=MAX_IMAGES)
87
+ with gr.TabItem('Pose'):
88
+ create_demo_pose(model.process_pose, max_images=MAX_IMAGES)
89
+ with gr.TabItem('Segmentation'):
90
+ create_demo_seg(model.process_seg, max_images=MAX_IMAGES)
91
+ with gr.TabItem('Depth'):
92
+ create_demo_depth(model.process_depth, max_images=MAX_IMAGES)
93
+ with gr.TabItem('Normal map'):
94
+ create_demo_normal(model.process_normal, max_images=MAX_IMAGES)
95
+
96
+ with gr.Accordion(label='Base model', open=False):
97
+ current_base_model = gr.Text(label='Current base model',
98
+ value=DEFAULT_BASE_MODEL_URL)
99
+ with gr.Row():
100
+ base_model_repo = gr.Text(label='Base model repo',
101
+ max_lines=1,
102
+ placeholder=DEFAULT_BASE_MODEL_REPO,
103
+ interactive=ALLOW_CHANGING_BASE_MODEL)
104
+ base_model_filename = gr.Text(
105
+ label='Base model file',
106
+ max_lines=1,
107
+ placeholder=DEFAULT_BASE_MODEL_FILENAME,
108
+ interactive=ALLOW_CHANGING_BASE_MODEL)
109
+ change_base_model_button = gr.Button('Change base model')
110
+ gr.Markdown(
111
+ '''- You can use other base models by specifying the repository name and filename.
112
+ The base model must be compatible with Stable Diffusion v1.5.''')
113
+
114
+ change_base_model_button.click(fn=model.set_base_model,
115
+ inputs=[
116
+ base_model_repo,
117
+ base_model_filename,
118
+ ],
119
+ outputs=current_base_model)
120
+
121
+ demo.queue(api_open=False).launch()
gradio_canny2image.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_canny2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with Canny Edge Maps')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ low_threshold = gr.Slider(label='Canny low threshold',
27
+ minimum=1,
28
+ maximum=255,
29
+ value=100,
30
+ step=1)
31
+ high_threshold = gr.Slider(label='Canny high threshold',
32
+ minimum=1,
33
+ maximum=255,
34
+ value=200,
35
+ step=1)
36
+ ddim_steps = gr.Slider(label='Steps',
37
+ minimum=1,
38
+ maximum=100,
39
+ value=20,
40
+ step=1)
41
+ scale = gr.Slider(label='Guidance Scale',
42
+ minimum=0.1,
43
+ maximum=30.0,
44
+ value=9.0,
45
+ step=0.1)
46
+ seed = gr.Slider(label='Seed',
47
+ minimum=-1,
48
+ maximum=2147483647,
49
+ step=1,
50
+ randomize=True)
51
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
52
+ a_prompt = gr.Textbox(
53
+ label='Added Prompt',
54
+ value='best quality, extremely detailed')
55
+ n_prompt = gr.Textbox(
56
+ label='Negative Prompt',
57
+ value=
58
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
59
+ )
60
+ with gr.Column():
61
+ result_gallery = gr.Gallery(label='Output',
62
+ show_label=False,
63
+ elem_id='gallery').style(
64
+ grid=2, height='auto')
65
+ ips = [
66
+ input_image, prompt, a_prompt, n_prompt, num_samples,
67
+ image_resolution, ddim_steps, scale, seed, eta, low_threshold,
68
+ high_threshold
69
+ ]
70
+ run_button.click(fn=process,
71
+ inputs=ips,
72
+ outputs=[result_gallery],
73
+ api_name='canny')
74
+ return demo
gradio_depth2image.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_depth2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with Depth Maps')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ detect_resolution = gr.Slider(label='Depth Resolution',
27
+ minimum=128,
28
+ maximum=1024,
29
+ value=384,
30
+ step=1)
31
+ ddim_steps = gr.Slider(label='Steps',
32
+ minimum=1,
33
+ maximum=100,
34
+ value=20,
35
+ step=1)
36
+ scale = gr.Slider(label='Guidance Scale',
37
+ minimum=0.1,
38
+ maximum=30.0,
39
+ value=9.0,
40
+ step=0.1)
41
+ seed = gr.Slider(label='Seed',
42
+ minimum=-1,
43
+ maximum=2147483647,
44
+ step=1,
45
+ randomize=True)
46
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
47
+ a_prompt = gr.Textbox(
48
+ label='Added Prompt',
49
+ value='best quality, extremely detailed')
50
+ n_prompt = gr.Textbox(
51
+ label='Negative Prompt',
52
+ value=
53
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
54
+ )
55
+ with gr.Column():
56
+ result_gallery = gr.Gallery(label='Output',
57
+ show_label=False,
58
+ elem_id='gallery').style(
59
+ grid=2, height='auto')
60
+ ips = [
61
+ input_image, prompt, a_prompt, n_prompt, num_samples,
62
+ image_resolution, detect_resolution, ddim_steps, scale, seed, eta
63
+ ]
64
+ run_button.click(fn=process,
65
+ inputs=ips,
66
+ outputs=[result_gallery],
67
+ api_name='depth')
68
+ return demo
gradio_fake_scribble2image.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_fake_scribble2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with Fake Scribble Maps')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ detect_resolution = gr.Slider(label='HED Resolution',
27
+ minimum=128,
28
+ maximum=1024,
29
+ value=512,
30
+ step=1)
31
+ ddim_steps = gr.Slider(label='Steps',
32
+ minimum=1,
33
+ maximum=100,
34
+ value=20,
35
+ step=1)
36
+ scale = gr.Slider(label='Guidance Scale',
37
+ minimum=0.1,
38
+ maximum=30.0,
39
+ value=9.0,
40
+ step=0.1)
41
+ seed = gr.Slider(label='Seed',
42
+ minimum=-1,
43
+ maximum=2147483647,
44
+ step=1,
45
+ randomize=True)
46
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
47
+ a_prompt = gr.Textbox(
48
+ label='Added Prompt',
49
+ value='best quality, extremely detailed')
50
+ n_prompt = gr.Textbox(
51
+ label='Negative Prompt',
52
+ value=
53
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
54
+ )
55
+ with gr.Column():
56
+ result_gallery = gr.Gallery(label='Output',
57
+ show_label=False,
58
+ elem_id='gallery').style(
59
+ grid=2, height='auto')
60
+ ips = [
61
+ input_image, prompt, a_prompt, n_prompt, num_samples,
62
+ image_resolution, detect_resolution, ddim_steps, scale, seed, eta
63
+ ]
64
+ run_button.click(fn=process,
65
+ inputs=ips,
66
+ outputs=[result_gallery],
67
+ api_name='fake_scribble')
68
+ return demo
gradio_hed2image.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_hed2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with HED Maps')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ detect_resolution = gr.Slider(label='HED Resolution',
27
+ minimum=128,
28
+ maximum=1024,
29
+ value=512,
30
+ step=1)
31
+ ddim_steps = gr.Slider(label='Steps',
32
+ minimum=1,
33
+ maximum=100,
34
+ value=20,
35
+ step=1)
36
+ scale = gr.Slider(label='Guidance Scale',
37
+ minimum=0.1,
38
+ maximum=30.0,
39
+ value=9.0,
40
+ step=0.1)
41
+ seed = gr.Slider(label='Seed',
42
+ minimum=-1,
43
+ maximum=2147483647,
44
+ step=1,
45
+ randomize=True)
46
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
47
+ a_prompt = gr.Textbox(
48
+ label='Added Prompt',
49
+ value='best quality, extremely detailed')
50
+ n_prompt = gr.Textbox(
51
+ label='Negative Prompt',
52
+ value=
53
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
54
+ )
55
+ with gr.Column():
56
+ result_gallery = gr.Gallery(label='Output',
57
+ show_label=False,
58
+ elem_id='gallery').style(
59
+ grid=2, height='auto')
60
+ ips = [
61
+ input_image, prompt, a_prompt, n_prompt, num_samples,
62
+ image_resolution, detect_resolution, ddim_steps, scale, seed, eta
63
+ ]
64
+ run_button.click(fn=process,
65
+ inputs=ips,
66
+ outputs=[result_gallery],
67
+ api_name='hed')
68
+ return demo
gradio_hough2image.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_hough2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with Hough Line Maps')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ detect_resolution = gr.Slider(label='Hough Resolution',
27
+ minimum=128,
28
+ maximum=1024,
29
+ value=512,
30
+ step=1)
31
+ value_threshold = gr.Slider(
32
+ label='Hough value threshold (MLSD)',
33
+ minimum=0.01,
34
+ maximum=2.0,
35
+ value=0.1,
36
+ step=0.01)
37
+ distance_threshold = gr.Slider(
38
+ label='Hough distance threshold (MLSD)',
39
+ minimum=0.01,
40
+ maximum=20.0,
41
+ value=0.1,
42
+ step=0.01)
43
+ ddim_steps = gr.Slider(label='Steps',
44
+ minimum=1,
45
+ maximum=100,
46
+ value=20,
47
+ step=1)
48
+ scale = gr.Slider(label='Guidance Scale',
49
+ minimum=0.1,
50
+ maximum=30.0,
51
+ value=9.0,
52
+ step=0.1)
53
+ seed = gr.Slider(label='Seed',
54
+ minimum=-1,
55
+ maximum=2147483647,
56
+ step=1,
57
+ randomize=True)
58
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
59
+ a_prompt = gr.Textbox(
60
+ label='Added Prompt',
61
+ value='best quality, extremely detailed')
62
+ n_prompt = gr.Textbox(
63
+ label='Negative Prompt',
64
+ value=
65
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
66
+ )
67
+ with gr.Column():
68
+ result_gallery = gr.Gallery(label='Output',
69
+ show_label=False,
70
+ elem_id='gallery').style(
71
+ grid=2, height='auto')
72
+ ips = [
73
+ input_image, prompt, a_prompt, n_prompt, num_samples,
74
+ image_resolution, detect_resolution, ddim_steps, scale, seed, eta,
75
+ value_threshold, distance_threshold
76
+ ]
77
+ run_button.click(fn=process,
78
+ inputs=ips,
79
+ outputs=[result_gallery],
80
+ api_name='hough')
81
+ return demo
gradio_normal2image.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_normal2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with Normal Maps')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ detect_resolution = gr.Slider(label='Normal Resolution',
27
+ minimum=128,
28
+ maximum=1024,
29
+ value=384,
30
+ step=1)
31
+ bg_threshold = gr.Slider(
32
+ label='Normal background threshold',
33
+ minimum=0.0,
34
+ maximum=1.0,
35
+ value=0.4,
36
+ step=0.01)
37
+ ddim_steps = gr.Slider(label='Steps',
38
+ minimum=1,
39
+ maximum=100,
40
+ value=20,
41
+ step=1)
42
+ scale = gr.Slider(label='Guidance Scale',
43
+ minimum=0.1,
44
+ maximum=30.0,
45
+ value=9.0,
46
+ step=0.1)
47
+ seed = gr.Slider(label='Seed',
48
+ minimum=-1,
49
+ maximum=2147483647,
50
+ step=1,
51
+ randomize=True)
52
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
53
+ a_prompt = gr.Textbox(
54
+ label='Added Prompt',
55
+ value='best quality, extremely detailed')
56
+ n_prompt = gr.Textbox(
57
+ label='Negative Prompt',
58
+ value=
59
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
60
+ )
61
+ with gr.Column():
62
+ result_gallery = gr.Gallery(label='Output',
63
+ show_label=False,
64
+ elem_id='gallery').style(
65
+ grid=2, height='auto')
66
+ ips = [
67
+ input_image, prompt, a_prompt, n_prompt, num_samples,
68
+ image_resolution, detect_resolution, ddim_steps, scale, seed, eta,
69
+ bg_threshold
70
+ ]
71
+ run_button.click(fn=process,
72
+ inputs=ips,
73
+ outputs=[result_gallery],
74
+ api_name='normal')
75
+ return demo
gradio_pose2image.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_pose2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with Human Pose')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ detect_resolution = gr.Slider(label='OpenPose Resolution',
27
+ minimum=128,
28
+ maximum=1024,
29
+ value=512,
30
+ step=1)
31
+ ddim_steps = gr.Slider(label='Steps',
32
+ minimum=1,
33
+ maximum=100,
34
+ value=20,
35
+ step=1)
36
+ scale = gr.Slider(label='Guidance Scale',
37
+ minimum=0.1,
38
+ maximum=30.0,
39
+ value=9.0,
40
+ step=0.1)
41
+ seed = gr.Slider(label='Seed',
42
+ minimum=-1,
43
+ maximum=2147483647,
44
+ step=1,
45
+ randomize=True)
46
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
47
+ a_prompt = gr.Textbox(
48
+ label='Added Prompt',
49
+ value='best quality, extremely detailed')
50
+ n_prompt = gr.Textbox(
51
+ label='Negative Prompt',
52
+ value=
53
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
54
+ )
55
+ with gr.Column():
56
+ result_gallery = gr.Gallery(label='Output',
57
+ show_label=False,
58
+ elem_id='gallery').style(
59
+ grid=2, height='auto')
60
+ ips = [
61
+ input_image, prompt, a_prompt, n_prompt, num_samples,
62
+ image_resolution, detect_resolution, ddim_steps, scale, seed, eta
63
+ ]
64
+ run_button.click(fn=process,
65
+ inputs=ips,
66
+ outputs=[result_gallery],
67
+ api_name='pose')
68
+ return demo
gradio_scribble2image.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_scribble2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with Scribble Maps')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ ddim_steps = gr.Slider(label='Steps',
27
+ minimum=1,
28
+ maximum=100,
29
+ value=20,
30
+ step=1)
31
+ scale = gr.Slider(label='Guidance Scale',
32
+ minimum=0.1,
33
+ maximum=30.0,
34
+ value=9.0,
35
+ step=0.1)
36
+ seed = gr.Slider(label='Seed',
37
+ minimum=-1,
38
+ maximum=2147483647,
39
+ step=1,
40
+ randomize=True)
41
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
42
+ a_prompt = gr.Textbox(
43
+ label='Added Prompt',
44
+ value='best quality, extremely detailed')
45
+ n_prompt = gr.Textbox(
46
+ label='Negative Prompt',
47
+ value=
48
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
49
+ )
50
+ with gr.Column():
51
+ result_gallery = gr.Gallery(label='Output',
52
+ show_label=False,
53
+ elem_id='gallery').style(
54
+ grid=2, height='auto')
55
+ ips = [
56
+ input_image, prompt, a_prompt, n_prompt, num_samples,
57
+ image_resolution, ddim_steps, scale, seed, eta
58
+ ]
59
+ run_button.click(fn=process,
60
+ inputs=ips,
61
+ outputs=[result_gallery],
62
+ api_name='scribble')
63
+ return demo
gradio_scribble2image_interactive.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_scribble2image_interactive.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+ import numpy as np
5
+
6
+
7
+ def create_canvas(w, h):
8
+ return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255
9
+
10
+
11
+ def create_demo(process, max_images=12):
12
+ with gr.Blocks() as demo:
13
+ with gr.Row():
14
+ gr.Markdown(
15
+ '## Control Stable Diffusion with Interactive Scribbles')
16
+ with gr.Row():
17
+ with gr.Column():
18
+ canvas_width = gr.Slider(label='Canvas Width',
19
+ minimum=256,
20
+ maximum=1024,
21
+ value=512,
22
+ step=1)
23
+ canvas_height = gr.Slider(label='Canvas Height',
24
+ minimum=256,
25
+ maximum=1024,
26
+ value=512,
27
+ step=1)
28
+ create_button = gr.Button(label='Start',
29
+ value='Open drawing canvas!')
30
+ input_image = gr.Image(source='upload',
31
+ type='numpy',
32
+ tool='sketch')
33
+ gr.Markdown(
34
+ value=
35
+ 'Do not forget to change your brush width to make it thinner. (Gradio do not allow developers to set brush width so you need to do it manually.) '
36
+ 'Just click on the small pencil icon in the upper right corner of the above block.'
37
+ )
38
+ create_button.click(fn=create_canvas,
39
+ inputs=[canvas_width, canvas_height],
40
+ outputs=[input_image],
41
+ queue=False)
42
+ prompt = gr.Textbox(label='Prompt')
43
+ run_button = gr.Button(label='Run')
44
+ with gr.Accordion('Advanced options', open=False):
45
+ num_samples = gr.Slider(label='Images',
46
+ minimum=1,
47
+ maximum=max_images,
48
+ value=1,
49
+ step=1)
50
+ image_resolution = gr.Slider(label='Image Resolution',
51
+ minimum=256,
52
+ maximum=768,
53
+ value=512,
54
+ step=256)
55
+ ddim_steps = gr.Slider(label='Steps',
56
+ minimum=1,
57
+ maximum=100,
58
+ value=20,
59
+ step=1)
60
+ scale = gr.Slider(label='Guidance Scale',
61
+ minimum=0.1,
62
+ maximum=30.0,
63
+ value=9.0,
64
+ step=0.1)
65
+ seed = gr.Slider(label='Seed',
66
+ minimum=-1,
67
+ maximum=2147483647,
68
+ step=1,
69
+ randomize=True)
70
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
71
+ a_prompt = gr.Textbox(
72
+ label='Added Prompt',
73
+ value='best quality, extremely detailed')
74
+ n_prompt = gr.Textbox(
75
+ label='Negative Prompt',
76
+ value=
77
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
78
+ )
79
+ with gr.Column():
80
+ result_gallery = gr.Gallery(label='Output',
81
+ show_label=False,
82
+ elem_id='gallery').style(
83
+ grid=2, height='auto')
84
+ ips = [
85
+ input_image, prompt, a_prompt, n_prompt, num_samples,
86
+ image_resolution, ddim_steps, scale, seed, eta
87
+ ]
88
+ run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
89
+ return demo
gradio_seg2image.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from https://github.com/lllyasviel/ControlNet/blob/f4748e3630d8141d7765e2bd9b1e348f47847707/gradio_seg2image.py
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ import gradio as gr
4
+
5
+
6
+ def create_demo(process, max_images=12):
7
+ with gr.Blocks() as demo:
8
+ with gr.Row():
9
+ gr.Markdown('## Control Stable Diffusion with Segmentation Maps')
10
+ with gr.Row():
11
+ with gr.Column():
12
+ input_image = gr.Image(source='upload', type='numpy')
13
+ prompt = gr.Textbox(label='Prompt')
14
+ run_button = gr.Button(label='Run')
15
+ with gr.Accordion('Advanced options', open=False):
16
+ num_samples = gr.Slider(label='Images',
17
+ minimum=1,
18
+ maximum=max_images,
19
+ value=1,
20
+ step=1)
21
+ image_resolution = gr.Slider(label='Image Resolution',
22
+ minimum=256,
23
+ maximum=768,
24
+ value=512,
25
+ step=256)
26
+ detect_resolution = gr.Slider(
27
+ label='Segmentation Resolution',
28
+ minimum=128,
29
+ maximum=1024,
30
+ value=512,
31
+ step=1)
32
+ ddim_steps = gr.Slider(label='Steps',
33
+ minimum=1,
34
+ maximum=100,
35
+ value=20,
36
+ step=1)
37
+ scale = gr.Slider(label='Guidance Scale',
38
+ minimum=0.1,
39
+ maximum=30.0,
40
+ value=9.0,
41
+ step=0.1)
42
+ seed = gr.Slider(label='Seed',
43
+ minimum=-1,
44
+ maximum=2147483647,
45
+ step=1,
46
+ randomize=True)
47
+ eta = gr.Number(label='eta (DDIM)', value=0.0)
48
+ a_prompt = gr.Textbox(
49
+ label='Added Prompt',
50
+ value='best quality, extremely detailed')
51
+ n_prompt = gr.Textbox(
52
+ label='Negative Prompt',
53
+ value=
54
+ 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality'
55
+ )
56
+ with gr.Column():
57
+ result_gallery = gr.Gallery(label='Output',
58
+ show_label=False,
59
+ elem_id='gallery').style(
60
+ grid=2, height='auto')
61
+ ips = [
62
+ input_image, prompt, a_prompt, n_prompt, num_samples,
63
+ image_resolution, detect_resolution, ddim_steps, scale, seed, eta
64
+ ]
65
+ run_button.click(fn=process,
66
+ inputs=ips,
67
+ outputs=[result_gallery],
68
+ api_name='seg')
69
+ return demo
model.py ADDED
@@ -0,0 +1,757 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # This file is adapted from gradio_*.py in https://github.com/lllyasviel/ControlNet/tree/f4748e3630d8141d7765e2bd9b1e348f47847707
2
+ # The original license file is LICENSE.ControlNet in this repo.
3
+ from __future__ import annotations
4
+
5
+ import pathlib
6
+ import random
7
+ import shlex
8
+ import subprocess
9
+ import sys
10
+
11
+ import cv2
12
+ import einops
13
+ import numpy as np
14
+ import torch
15
+ from huggingface_hub import hf_hub_url
16
+ from pytorch_lightning import seed_everything
17
+
18
+ sys.path.append('ControlNet')
19
+
20
+ import config
21
+ from annotator.canny import apply_canny
22
+ from annotator.hed import apply_hed, nms
23
+ from annotator.midas import apply_midas
24
+ from annotator.mlsd import apply_mlsd
25
+ from annotator.openpose import apply_openpose
26
+ from annotator.uniformer import apply_uniformer
27
+ from annotator.util import HWC3, resize_image
28
+ from cldm.model import create_model, load_state_dict
29
+ from ldm.models.diffusion.ddim import DDIMSampler
30
+ from share import *
31
+
32
+ MODEL_NAMES = {
33
+ 'canny': 'control_canny-fp16.safetensors',
34
+ 'hough': 'control_mlsd-fp16.safetensors',
35
+ 'hed': 'control_hed-fp16.safetensors',
36
+ 'scribble': 'control_scribble-fp16.safetensors',
37
+ 'pose': 'control_openpose-fp16.safetensors',
38
+ 'seg': 'control_seg-fp16.safetensors',
39
+ 'depth': 'control_depth-fp16.safetensors',
40
+ 'normal': 'control_normal-fp16.safetensors',
41
+ }
42
+ MODEL_REPO = 'webui/ControlNet-modules-safetensors'
43
+
44
+ DEFAULT_BASE_MODEL_REPO = 'andite/anything-v4.0'
45
+ DEFAULT_BASE_MODEL_FILENAME = 'anything-v4.0-pruned.safetensors'
46
+ DEFAULT_BASE_MODEL_URL = 'https://huggingface.co/andite/anything-v4.0/resolve/main/anything-v4.0-pruned.safetensors'
47
+
48
+
49
+ class Model:
50
+ def __init__(self,
51
+ model_config_path: str = 'ControlNet/models/cldm_v15.yaml',
52
+ model_dir: str = 'models'):
53
+ self.device = torch.device(
54
+ 'cuda:0' if torch.cuda.is_available() else 'cpu')
55
+ self.model = create_model(model_config_path).to(self.device)
56
+ self.ddim_sampler = DDIMSampler(self.model)
57
+ self.task_name = ''
58
+
59
+ self.base_model_url = ''
60
+ self.model_dir = pathlib.Path(model_dir)
61
+ self.model_dir.mkdir(exist_ok=True, parents=True)
62
+
63
+ self.download_models()
64
+ self.set_base_model(DEFAULT_BASE_MODEL_REPO,
65
+ DEFAULT_BASE_MODEL_FILENAME)
66
+
67
+ def set_base_model(self, model_id: str, filename: str) -> str:
68
+ if not model_id or not filename:
69
+ return self.base_model_url
70
+ base_model_url = hf_hub_url(model_id, filename)
71
+ if base_model_url != self.base_model_url:
72
+ self.load_base_model(base_model_url)
73
+ self.base_model_url = base_model_url
74
+ return self.base_model_url
75
+
76
+ def download_base_model(self, model_url: str) -> pathlib.Path:
77
+ self.model_dir.mkdir(exist_ok=True, parents=True)
78
+ model_name = model_url.split('/')[-1]
79
+ out_path = self.model_dir / model_name
80
+ if not out_path.exists():
81
+ subprocess.run(shlex.split(f'wget {model_url} -O {out_path}'))
82
+ return out_path
83
+
84
+ def load_base_model(self, model_url: str) -> None:
85
+ model_path = self.download_base_model(model_url)
86
+ self.model.load_state_dict(load_state_dict(model_path,
87
+ location=self.device.type),
88
+ strict=False)
89
+
90
+ def load_weight(self, task_name: str) -> None:
91
+ if task_name == self.task_name:
92
+ return
93
+ weight_path = self.get_weight_path(task_name)
94
+ self.model.control_model.load_state_dict(
95
+ load_state_dict(weight_path, location=self.device.type))
96
+ self.task_name = task_name
97
+
98
+ def get_weight_path(self, task_name: str) -> str:
99
+ if 'scribble' in task_name:
100
+ task_name = 'scribble'
101
+ return f'{self.model_dir}/{MODEL_NAMES[task_name]}'
102
+
103
+ def download_models(self) -> None:
104
+ self.model_dir.mkdir(exist_ok=True, parents=True)
105
+ for name in MODEL_NAMES.values():
106
+ out_path = self.model_dir / name
107
+ if out_path.exists():
108
+ continue
109
+ model_url = hf_hub_url(MODEL_REPO, name)
110
+ subprocess.run(shlex.split(f'wget {model_url} -O {out_path}'))
111
+
112
+ @torch.inference_mode()
113
+ def process_canny(self, input_image, prompt, a_prompt, n_prompt,
114
+ num_samples, image_resolution, ddim_steps, scale, seed,
115
+ eta, low_threshold, high_threshold):
116
+ self.load_weight('canny')
117
+
118
+ img = resize_image(HWC3(input_image), image_resolution)
119
+ H, W, C = img.shape
120
+
121
+ detected_map = apply_canny(img, low_threshold, high_threshold)
122
+ detected_map = HWC3(detected_map)
123
+
124
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
125
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
126
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
127
+
128
+ if seed == -1:
129
+ seed = random.randint(0, 65535)
130
+ seed_everything(seed)
131
+
132
+ if config.save_memory:
133
+ self.model.low_vram_shift(is_diffusing=False)
134
+
135
+ cond = {
136
+ 'c_concat': [control],
137
+ 'c_crossattn': [
138
+ self.model.get_learned_conditioning(
139
+ [prompt + ', ' + a_prompt] * num_samples)
140
+ ]
141
+ }
142
+ un_cond = {
143
+ 'c_concat': [control],
144
+ 'c_crossattn':
145
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
146
+ }
147
+ shape = (4, H // 8, W // 8)
148
+
149
+ if config.save_memory:
150
+ self.model.low_vram_shift(is_diffusing=True)
151
+
152
+ samples, intermediates = self.ddim_sampler.sample(
153
+ ddim_steps,
154
+ num_samples,
155
+ shape,
156
+ cond,
157
+ verbose=False,
158
+ eta=eta,
159
+ unconditional_guidance_scale=scale,
160
+ unconditional_conditioning=un_cond)
161
+
162
+ if config.save_memory:
163
+ self.model.low_vram_shift(is_diffusing=False)
164
+
165
+ x_samples = self.model.decode_first_stage(samples)
166
+ x_samples = (
167
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
168
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
169
+
170
+ results = [x_samples[i] for i in range(num_samples)]
171
+ return [255 - detected_map] + results
172
+
173
+ @torch.inference_mode()
174
+ def process_hough(self, input_image, prompt, a_prompt, n_prompt,
175
+ num_samples, image_resolution, detect_resolution,
176
+ ddim_steps, scale, seed, eta, value_threshold,
177
+ distance_threshold):
178
+ self.load_weight('hough')
179
+
180
+ input_image = HWC3(input_image)
181
+ detected_map = apply_mlsd(resize_image(input_image, detect_resolution),
182
+ value_threshold, distance_threshold)
183
+ detected_map = HWC3(detected_map)
184
+ img = resize_image(input_image, image_resolution)
185
+ H, W, C = img.shape
186
+
187
+ detected_map = cv2.resize(detected_map, (W, H),
188
+ interpolation=cv2.INTER_NEAREST)
189
+
190
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
191
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
192
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
193
+
194
+ if seed == -1:
195
+ seed = random.randint(0, 65535)
196
+ seed_everything(seed)
197
+
198
+ if config.save_memory:
199
+ self.model.low_vram_shift(is_diffusing=False)
200
+
201
+ cond = {
202
+ 'c_concat': [control],
203
+ 'c_crossattn': [
204
+ self.model.get_learned_conditioning(
205
+ [prompt + ', ' + a_prompt] * num_samples)
206
+ ]
207
+ }
208
+ un_cond = {
209
+ 'c_concat': [control],
210
+ 'c_crossattn':
211
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
212
+ }
213
+ shape = (4, H // 8, W // 8)
214
+
215
+ if config.save_memory:
216
+ self.model.low_vram_shift(is_diffusing=True)
217
+
218
+ samples, intermediates = self.ddim_sampler.sample(
219
+ ddim_steps,
220
+ num_samples,
221
+ shape,
222
+ cond,
223
+ verbose=False,
224
+ eta=eta,
225
+ unconditional_guidance_scale=scale,
226
+ unconditional_conditioning=un_cond)
227
+
228
+ if config.save_memory:
229
+ self.model.low_vram_shift(is_diffusing=False)
230
+
231
+ x_samples = self.model.decode_first_stage(samples)
232
+ x_samples = (
233
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
234
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
235
+
236
+ results = [x_samples[i] for i in range(num_samples)]
237
+ return [
238
+ 255 - cv2.dilate(detected_map,
239
+ np.ones(shape=(3, 3), dtype=np.uint8),
240
+ iterations=1)
241
+ ] + results
242
+
243
+ @torch.inference_mode()
244
+ def process_hed(self, input_image, prompt, a_prompt, n_prompt, num_samples,
245
+ image_resolution, detect_resolution, ddim_steps, scale,
246
+ seed, eta):
247
+ self.load_weight('hed')
248
+
249
+ input_image = HWC3(input_image)
250
+ detected_map = apply_hed(resize_image(input_image, detect_resolution))
251
+ detected_map = HWC3(detected_map)
252
+ img = resize_image(input_image, image_resolution)
253
+ H, W, C = img.shape
254
+
255
+ detected_map = cv2.resize(detected_map, (W, H),
256
+ interpolation=cv2.INTER_LINEAR)
257
+
258
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
259
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
260
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
261
+
262
+ if seed == -1:
263
+ seed = random.randint(0, 65535)
264
+ seed_everything(seed)
265
+
266
+ if config.save_memory:
267
+ self.model.low_vram_shift(is_diffusing=False)
268
+
269
+ cond = {
270
+ 'c_concat': [control],
271
+ 'c_crossattn': [
272
+ self.model.get_learned_conditioning(
273
+ [prompt + ', ' + a_prompt] * num_samples)
274
+ ]
275
+ }
276
+ un_cond = {
277
+ 'c_concat': [control],
278
+ 'c_crossattn':
279
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
280
+ }
281
+ shape = (4, H // 8, W // 8)
282
+
283
+ if config.save_memory:
284
+ self.model.low_vram_shift(is_diffusing=True)
285
+
286
+ samples, intermediates = self.ddim_sampler.sample(
287
+ ddim_steps,
288
+ num_samples,
289
+ shape,
290
+ cond,
291
+ verbose=False,
292
+ eta=eta,
293
+ unconditional_guidance_scale=scale,
294
+ unconditional_conditioning=un_cond)
295
+
296
+ if config.save_memory:
297
+ self.model.low_vram_shift(is_diffusing=False)
298
+
299
+ x_samples = self.model.decode_first_stage(samples)
300
+ x_samples = (
301
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
302
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
303
+
304
+ results = [x_samples[i] for i in range(num_samples)]
305
+ return [detected_map] + results
306
+
307
+ @torch.inference_mode()
308
+ def process_scribble(self, input_image, prompt, a_prompt, n_prompt,
309
+ num_samples, image_resolution, ddim_steps, scale,
310
+ seed, eta):
311
+ self.load_weight('scribble')
312
+
313
+ img = resize_image(HWC3(input_image), image_resolution)
314
+ H, W, C = img.shape
315
+
316
+ detected_map = np.zeros_like(img, dtype=np.uint8)
317
+ detected_map[np.min(img, axis=2) < 127] = 255
318
+
319
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
320
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
321
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
322
+
323
+ if seed == -1:
324
+ seed = random.randint(0, 65535)
325
+ seed_everything(seed)
326
+
327
+ if config.save_memory:
328
+ self.model.low_vram_shift(is_diffusing=False)
329
+
330
+ cond = {
331
+ 'c_concat': [control],
332
+ 'c_crossattn': [
333
+ self.model.get_learned_conditioning(
334
+ [prompt + ', ' + a_prompt] * num_samples)
335
+ ]
336
+ }
337
+ un_cond = {
338
+ 'c_concat': [control],
339
+ 'c_crossattn':
340
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
341
+ }
342
+ shape = (4, H // 8, W // 8)
343
+
344
+ if config.save_memory:
345
+ self.model.low_vram_shift(is_diffusing=True)
346
+
347
+ samples, intermediates = self.ddim_sampler.sample(
348
+ ddim_steps,
349
+ num_samples,
350
+ shape,
351
+ cond,
352
+ verbose=False,
353
+ eta=eta,
354
+ unconditional_guidance_scale=scale,
355
+ unconditional_conditioning=un_cond)
356
+
357
+ if config.save_memory:
358
+ self.model.low_vram_shift(is_diffusing=False)
359
+
360
+ x_samples = self.model.decode_first_stage(samples)
361
+ x_samples = (
362
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
363
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
364
+
365
+ results = [x_samples[i] for i in range(num_samples)]
366
+ return [255 - detected_map] + results
367
+
368
+ @torch.inference_mode()
369
+ def process_scribble_interactive(self, input_image, prompt, a_prompt,
370
+ n_prompt, num_samples, image_resolution,
371
+ ddim_steps, scale, seed, eta):
372
+ self.load_weight('scribble')
373
+
374
+ img = resize_image(HWC3(input_image['mask'][:, :, 0]),
375
+ image_resolution)
376
+ H, W, C = img.shape
377
+
378
+ detected_map = np.zeros_like(img, dtype=np.uint8)
379
+ detected_map[np.min(img, axis=2) > 127] = 255
380
+
381
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
382
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
383
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
384
+
385
+ if seed == -1:
386
+ seed = random.randint(0, 65535)
387
+ seed_everything(seed)
388
+
389
+ if config.save_memory:
390
+ self.model.low_vram_shift(is_diffusing=False)
391
+
392
+ cond = {
393
+ 'c_concat': [control],
394
+ 'c_crossattn': [
395
+ self.model.get_learned_conditioning(
396
+ [prompt + ', ' + a_prompt] * num_samples)
397
+ ]
398
+ }
399
+ un_cond = {
400
+ 'c_concat': [control],
401
+ 'c_crossattn':
402
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
403
+ }
404
+ shape = (4, H // 8, W // 8)
405
+
406
+ if config.save_memory:
407
+ self.model.low_vram_shift(is_diffusing=True)
408
+
409
+ samples, intermediates = self.ddim_sampler.sample(
410
+ ddim_steps,
411
+ num_samples,
412
+ shape,
413
+ cond,
414
+ verbose=False,
415
+ eta=eta,
416
+ unconditional_guidance_scale=scale,
417
+ unconditional_conditioning=un_cond)
418
+
419
+ if config.save_memory:
420
+ self.model.low_vram_shift(is_diffusing=False)
421
+
422
+ x_samples = self.model.decode_first_stage(samples)
423
+ x_samples = (
424
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
425
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
426
+
427
+ results = [x_samples[i] for i in range(num_samples)]
428
+ return [255 - detected_map] + results
429
+
430
+ @torch.inference_mode()
431
+ def process_fake_scribble(self, input_image, prompt, a_prompt, n_prompt,
432
+ num_samples, image_resolution, detect_resolution,
433
+ ddim_steps, scale, seed, eta):
434
+ self.load_weight('scribble')
435
+
436
+ input_image = HWC3(input_image)
437
+ detected_map = apply_hed(resize_image(input_image, detect_resolution))
438
+ detected_map = HWC3(detected_map)
439
+ img = resize_image(input_image, image_resolution)
440
+ H, W, C = img.shape
441
+
442
+ detected_map = cv2.resize(detected_map, (W, H),
443
+ interpolation=cv2.INTER_LINEAR)
444
+ detected_map = nms(detected_map, 127, 3.0)
445
+ detected_map = cv2.GaussianBlur(detected_map, (0, 0), 3.0)
446
+ detected_map[detected_map > 4] = 255
447
+ detected_map[detected_map < 255] = 0
448
+
449
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
450
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
451
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
452
+
453
+ if seed == -1:
454
+ seed = random.randint(0, 65535)
455
+ seed_everything(seed)
456
+
457
+ if config.save_memory:
458
+ self.model.low_vram_shift(is_diffusing=False)
459
+
460
+ cond = {
461
+ 'c_concat': [control],
462
+ 'c_crossattn': [
463
+ self.model.get_learned_conditioning(
464
+ [prompt + ', ' + a_prompt] * num_samples)
465
+ ]
466
+ }
467
+ un_cond = {
468
+ 'c_concat': [control],
469
+ 'c_crossattn':
470
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
471
+ }
472
+ shape = (4, H // 8, W // 8)
473
+
474
+ if config.save_memory:
475
+ self.model.low_vram_shift(is_diffusing=True)
476
+
477
+ samples, intermediates = self.ddim_sampler.sample(
478
+ ddim_steps,
479
+ num_samples,
480
+ shape,
481
+ cond,
482
+ verbose=False,
483
+ eta=eta,
484
+ unconditional_guidance_scale=scale,
485
+ unconditional_conditioning=un_cond)
486
+
487
+ if config.save_memory:
488
+ self.model.low_vram_shift(is_diffusing=False)
489
+
490
+ x_samples = self.model.decode_first_stage(samples)
491
+ x_samples = (
492
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
493
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
494
+
495
+ results = [x_samples[i] for i in range(num_samples)]
496
+ return [255 - detected_map] + results
497
+
498
+ @torch.inference_mode()
499
+ def process_pose(self, input_image, prompt, a_prompt, n_prompt,
500
+ num_samples, image_resolution, detect_resolution,
501
+ ddim_steps, scale, seed, eta):
502
+ self.load_weight('pose')
503
+
504
+ input_image = HWC3(input_image)
505
+ detected_map, _ = apply_openpose(
506
+ resize_image(input_image, detect_resolution))
507
+ detected_map = HWC3(detected_map)
508
+ img = resize_image(input_image, image_resolution)
509
+ H, W, C = img.shape
510
+
511
+ detected_map = cv2.resize(detected_map, (W, H),
512
+ interpolation=cv2.INTER_NEAREST)
513
+
514
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
515
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
516
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
517
+
518
+ if seed == -1:
519
+ seed = random.randint(0, 65535)
520
+ seed_everything(seed)
521
+
522
+ if config.save_memory:
523
+ self.model.low_vram_shift(is_diffusing=False)
524
+
525
+ cond = {
526
+ 'c_concat': [control],
527
+ 'c_crossattn': [
528
+ self.model.get_learned_conditioning(
529
+ [prompt + ', ' + a_prompt] * num_samples)
530
+ ]
531
+ }
532
+ un_cond = {
533
+ 'c_concat': [control],
534
+ 'c_crossattn':
535
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
536
+ }
537
+ shape = (4, H // 8, W // 8)
538
+
539
+ if config.save_memory:
540
+ self.model.low_vram_shift(is_diffusing=True)
541
+
542
+ samples, intermediates = self.ddim_sampler.sample(
543
+ ddim_steps,
544
+ num_samples,
545
+ shape,
546
+ cond,
547
+ verbose=False,
548
+ eta=eta,
549
+ unconditional_guidance_scale=scale,
550
+ unconditional_conditioning=un_cond)
551
+
552
+ if config.save_memory:
553
+ self.model.low_vram_shift(is_diffusing=False)
554
+
555
+ x_samples = self.model.decode_first_stage(samples)
556
+ x_samples = (
557
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
558
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
559
+
560
+ results = [x_samples[i] for i in range(num_samples)]
561
+ return [detected_map] + results
562
+
563
+ @torch.inference_mode()
564
+ def process_seg(self, input_image, prompt, a_prompt, n_prompt, num_samples,
565
+ image_resolution, detect_resolution, ddim_steps, scale,
566
+ seed, eta):
567
+ self.load_weight('seg')
568
+
569
+ input_image = HWC3(input_image)
570
+ detected_map = apply_uniformer(
571
+ resize_image(input_image, detect_resolution))
572
+ img = resize_image(input_image, image_resolution)
573
+ H, W, C = img.shape
574
+
575
+ detected_map = cv2.resize(detected_map, (W, H),
576
+ interpolation=cv2.INTER_NEAREST)
577
+
578
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
579
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
580
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
581
+
582
+ if seed == -1:
583
+ seed = random.randint(0, 65535)
584
+ seed_everything(seed)
585
+
586
+ if config.save_memory:
587
+ self.model.low_vram_shift(is_diffusing=False)
588
+
589
+ cond = {
590
+ 'c_concat': [control],
591
+ 'c_crossattn': [
592
+ self.model.get_learned_conditioning(
593
+ [prompt + ', ' + a_prompt] * num_samples)
594
+ ]
595
+ }
596
+ un_cond = {
597
+ 'c_concat': [control],
598
+ 'c_crossattn':
599
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
600
+ }
601
+ shape = (4, H // 8, W // 8)
602
+
603
+ if config.save_memory:
604
+ self.model.low_vram_shift(is_diffusing=True)
605
+
606
+ samples, intermediates = self.ddim_sampler.sample(
607
+ ddim_steps,
608
+ num_samples,
609
+ shape,
610
+ cond,
611
+ verbose=False,
612
+ eta=eta,
613
+ unconditional_guidance_scale=scale,
614
+ unconditional_conditioning=un_cond)
615
+
616
+ if config.save_memory:
617
+ self.model.low_vram_shift(is_diffusing=False)
618
+
619
+ x_samples = self.model.decode_first_stage(samples)
620
+ x_samples = (
621
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
622
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
623
+
624
+ results = [x_samples[i] for i in range(num_samples)]
625
+ return [detected_map] + results
626
+
627
+ @torch.inference_mode()
628
+ def process_depth(self, input_image, prompt, a_prompt, n_prompt,
629
+ num_samples, image_resolution, detect_resolution,
630
+ ddim_steps, scale, seed, eta):
631
+ self.load_weight('depth')
632
+
633
+ input_image = HWC3(input_image)
634
+ detected_map, _ = apply_midas(
635
+ resize_image(input_image, detect_resolution))
636
+ detected_map = HWC3(detected_map)
637
+ img = resize_image(input_image, image_resolution)
638
+ H, W, C = img.shape
639
+
640
+ detected_map = cv2.resize(detected_map, (W, H),
641
+ interpolation=cv2.INTER_LINEAR)
642
+
643
+ control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
644
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
645
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
646
+
647
+ if seed == -1:
648
+ seed = random.randint(0, 65535)
649
+ seed_everything(seed)
650
+
651
+ if config.save_memory:
652
+ self.model.low_vram_shift(is_diffusing=False)
653
+
654
+ cond = {
655
+ 'c_concat': [control],
656
+ 'c_crossattn': [
657
+ self.model.get_learned_conditioning(
658
+ [prompt + ', ' + a_prompt] * num_samples)
659
+ ]
660
+ }
661
+ un_cond = {
662
+ 'c_concat': [control],
663
+ 'c_crossattn':
664
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
665
+ }
666
+ shape = (4, H // 8, W // 8)
667
+
668
+ if config.save_memory:
669
+ self.model.low_vram_shift(is_diffusing=True)
670
+
671
+ samples, intermediates = self.ddim_sampler.sample(
672
+ ddim_steps,
673
+ num_samples,
674
+ shape,
675
+ cond,
676
+ verbose=False,
677
+ eta=eta,
678
+ unconditional_guidance_scale=scale,
679
+ unconditional_conditioning=un_cond)
680
+
681
+ if config.save_memory:
682
+ self.model.low_vram_shift(is_diffusing=False)
683
+
684
+ x_samples = self.model.decode_first_stage(samples)
685
+ x_samples = (
686
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
687
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
688
+
689
+ results = [x_samples[i] for i in range(num_samples)]
690
+ return [detected_map] + results
691
+
692
+ @torch.inference_mode()
693
+ def process_normal(self, input_image, prompt, a_prompt, n_prompt,
694
+ num_samples, image_resolution, detect_resolution,
695
+ ddim_steps, scale, seed, eta, bg_threshold):
696
+ self.load_weight('normal')
697
+
698
+ input_image = HWC3(input_image)
699
+ _, detected_map = apply_midas(resize_image(input_image,
700
+ detect_resolution),
701
+ bg_th=bg_threshold)
702
+ detected_map = HWC3(detected_map)
703
+ img = resize_image(input_image, image_resolution)
704
+ H, W, C = img.shape
705
+
706
+ detected_map = cv2.resize(detected_map, (W, H),
707
+ interpolation=cv2.INTER_LINEAR)
708
+
709
+ control = torch.from_numpy(
710
+ detected_map[:, :, ::-1].copy()).float().cuda() / 255.0
711
+ control = torch.stack([control for _ in range(num_samples)], dim=0)
712
+ control = einops.rearrange(control, 'b h w c -> b c h w').clone()
713
+
714
+ if seed == -1:
715
+ seed = random.randint(0, 65535)
716
+ seed_everything(seed)
717
+
718
+ if config.save_memory:
719
+ self.model.low_vram_shift(is_diffusing=False)
720
+
721
+ cond = {
722
+ 'c_concat': [control],
723
+ 'c_crossattn': [
724
+ self.model.get_learned_conditioning(
725
+ [prompt + ', ' + a_prompt] * num_samples)
726
+ ]
727
+ }
728
+ un_cond = {
729
+ 'c_concat': [control],
730
+ 'c_crossattn':
731
+ [self.model.get_learned_conditioning([n_prompt] * num_samples)]
732
+ }
733
+ shape = (4, H // 8, W // 8)
734
+
735
+ if config.save_memory:
736
+ self.model.low_vram_shift(is_diffusing=True)
737
+
738
+ samples, intermediates = self.ddim_sampler.sample(
739
+ ddim_steps,
740
+ num_samples,
741
+ shape,
742
+ cond,
743
+ verbose=False,
744
+ eta=eta,
745
+ unconditional_guidance_scale=scale,
746
+ unconditional_conditioning=un_cond)
747
+
748
+ if config.save_memory:
749
+ self.model.low_vram_shift(is_diffusing=False)
750
+
751
+ x_samples = self.model.decode_first_stage(samples)
752
+ x_samples = (
753
+ einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 +
754
+ 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
755
+
756
+ results = [x_samples[i] for i in range(num_samples)]
757
+ return [detected_map] + results
patch ADDED
@@ -0,0 +1,115 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ diff --git a/annotator/hed/__init__.py b/annotator/hed/__init__.py
2
+ index 42d8dc6..1587035 100644
3
+ --- a/annotator/hed/__init__.py
4
+ +++ b/annotator/hed/__init__.py
5
+ @@ -1,8 +1,12 @@
6
+ +import pathlib
7
+ +
8
+ import numpy as np
9
+ import cv2
10
+ import torch
11
+ from einops import rearrange
12
+
13
+ +root_dir = pathlib.Path(__file__).parents[2]
14
+ +
15
+
16
+ class Network(torch.nn.Module):
17
+ def __init__(self):
18
+ @@ -64,7 +68,7 @@ class Network(torch.nn.Module):
19
+ torch.nn.Sigmoid()
20
+ )
21
+
22
+ - self.load_state_dict({strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.load('./annotator/ckpts/network-bsds500.pth').items()})
23
+ + self.load_state_dict({strKey.replace('module', 'net'): tenWeight for strKey, tenWeight in torch.load(f'{root_dir}/annotator/ckpts/network-bsds500.pth').items()})
24
+ # end
25
+
26
+ def forward(self, tenInput):
27
+ diff --git a/annotator/midas/api.py b/annotator/midas/api.py
28
+ index 9fa305e..d8594ea 100644
29
+ --- a/annotator/midas/api.py
30
+ +++ b/annotator/midas/api.py
31
+ @@ -1,5 +1,7 @@
32
+ # based on https://github.com/isl-org/MiDaS
33
+
34
+ +import pathlib
35
+ +
36
+ import cv2
37
+ import torch
38
+ import torch.nn as nn
39
+ @@ -10,10 +12,11 @@ from .midas.midas_net import MidasNet
40
+ from .midas.midas_net_custom import MidasNet_small
41
+ from .midas.transforms import Resize, NormalizeImage, PrepareForNet
42
+
43
+ +root_dir = pathlib.Path(__file__).parents[2]
44
+
45
+ ISL_PATHS = {
46
+ - "dpt_large": "annotator/ckpts/dpt_large-midas-2f21e586.pt",
47
+ - "dpt_hybrid": "annotator/ckpts/dpt_hybrid-midas-501f0c75.pt",
48
+ + "dpt_large": f"{root_dir}/annotator/ckpts/dpt_large-midas-2f21e586.pt",
49
+ + "dpt_hybrid": f"{root_dir}/annotator/ckpts/dpt_hybrid-midas-501f0c75.pt",
50
+ "midas_v21": "",
51
+ "midas_v21_small": "",
52
+ }
53
+ diff --git a/annotator/mlsd/__init__.py b/annotator/mlsd/__init__.py
54
+ index 75db717..f310fe6 100644
55
+ --- a/annotator/mlsd/__init__.py
56
+ +++ b/annotator/mlsd/__init__.py
57
+ @@ -1,3 +1,5 @@
58
+ +import pathlib
59
+ +
60
+ import cv2
61
+ import numpy as np
62
+ import torch
63
+ @@ -8,8 +10,9 @@ from .models.mbv2_mlsd_tiny import MobileV2_MLSD_Tiny
64
+ from .models.mbv2_mlsd_large import MobileV2_MLSD_Large
65
+ from .utils import pred_lines
66
+
67
+ +root_dir = pathlib.Path(__file__).parents[2]
68
+
69
+ -model_path = './annotator/ckpts/mlsd_large_512_fp32.pth'
70
+ +model_path = f'{root_dir}/annotator/ckpts/mlsd_large_512_fp32.pth'
71
+ model = MobileV2_MLSD_Large()
72
+ model.load_state_dict(torch.load(model_path), strict=True)
73
+ model = model.cuda().eval()
74
+ diff --git a/annotator/openpose/__init__.py b/annotator/openpose/__init__.py
75
+ index 47d50a5..2369eed 100644
76
+ --- a/annotator/openpose/__init__.py
77
+ +++ b/annotator/openpose/__init__.py
78
+ @@ -1,4 +1,5 @@
79
+ import os
80
+ +import pathlib
81
+ os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
82
+
83
+ import torch
84
+ @@ -7,8 +8,10 @@ from . import util
85
+ from .body import Body
86
+ from .hand import Hand
87
+
88
+ -body_estimation = Body('./annotator/ckpts/body_pose_model.pth')
89
+ -hand_estimation = Hand('./annotator/ckpts/hand_pose_model.pth')
90
+ +root_dir = pathlib.Path(__file__).parents[2]
91
+ +
92
+ +body_estimation = Body(f'{root_dir}/annotator/ckpts/body_pose_model.pth')
93
+ +hand_estimation = Hand(f'{root_dir}/annotator/ckpts/hand_pose_model.pth')
94
+
95
+
96
+ def apply_openpose(oriImg, hand=False):
97
+ diff --git a/annotator/uniformer/__init__.py b/annotator/uniformer/__init__.py
98
+ index 500e53c..4061dbe 100644
99
+ --- a/annotator/uniformer/__init__.py
100
+ +++ b/annotator/uniformer/__init__.py
101
+ @@ -1,9 +1,12 @@
102
+ +import pathlib
103
+ +
104
+ from annotator.uniformer.mmseg.apis import init_segmentor, inference_segmentor, show_result_pyplot
105
+ from annotator.uniformer.mmseg.core.evaluation import get_palette
106
+
107
+ +root_dir = pathlib.Path(__file__).parents[2]
108
+
109
+ -checkpoint_file = "annotator/ckpts/upernet_global_small.pth"
110
+ -config_file = 'annotator/uniformer/exp/upernet_global_small/config.py'
111
+ +checkpoint_file = f"{root_dir}/annotator/ckpts/upernet_global_small.pth"
112
+ +config_file = f'{root_dir}/annotator/uniformer/exp/upernet_global_small/config.py'
113
+ model = init_segmentor(config_file, checkpoint_file).cuda()
114
+
115
+
requirements.txt ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ addict==2.4.0
2
+ albumentations==1.3.0
3
+ einops==0.6.0
4
+ gradio==3.18.0
5
+ huggingface-hub==0.12.0
6
+ imageio==2.25.0
7
+ imageio-ffmpeg==0.4.8
8
+ kornia==0.6.9
9
+ omegaconf==2.3.0
10
+ open-clip-torch==2.13.0
11
+ opencv-contrib-python==4.7.0.68
12
+ opencv-python-headless==4.7.0.68
13
+ prettytable==3.6.0
14
+ pytorch-lightning==1.9.0
15
+ safetensors==0.2.8
16
+ timm==0.6.12
17
+ torch==1.13.1
18
+ torchvision==0.14.1
19
+ transformers==4.26.1
20
+ xformers==0.0.16
21
+ yapf==0.32.0
style.css ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ h1 {
2
+ text-align: center;
3
+ }