import gradio as gr from transformers import pipeline # Load the pipeline pipe = pipeline("zero-shot-image-classification", model="patrickjohncyh/fashion-clip") # Define the Gradio interface def classify_image(image): # Perform zero-shot image classification result = pipe(image) labels = result["labels"] scores = result["scores"] return {label: score for label, score in zip(labels, scores)} # Create a Gradio interface iface = gr.Interface( fn=classify_image, inputs=gr.inputs.Image(), outputs=gr.outputs.Label(num_top_classes=3) # Adjust the number of top classes as needed ) # Launch the interface iface.launch()