File size: 14,537 Bytes
d18d2d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
import argparse
import hashlib
import json
import os
import time
from threading import Thread

import gradio as gr
import torch
from llava.constants import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN,
                             DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX)
from llava.conversation import (SeparatorStyle, conv_templates,
                                default_conversation)
from llava.mm_utils import (KeywordsStoppingCriteria, load_image_from_base64,
                            process_images, tokenizer_image_token)
from llava.model.builder import load_pretrained_model
from transformers import TextIteratorStreamer

print(gr.__version__)

block_css = """

#buttons button {
    min-width: min(120px,100%);
}
"""
title_markdown = ("""
# 🐬 ShareGPT4V: Improving Large Multi-modal Models with Better Captions
### πŸ”Š Notice: The demo of Share-Captioner will soon be supported. Stay tune for updates!
[[Project Page](https://sharegpt4v.github.io/)] [[Code](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V)] | πŸ“š [[Paper](https://arxiv.org/pdf/2311.12793.pdf)]
""")
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")
ack_markdown = ("""
### Acknowledgement
The template for this web demo is from [LLaVA](https://github.com/haotian-liu/LLaVA), and we are very grateful to LLaVA for their open source contributions to the community!
""")


def regenerate(state, image_process_mode):
    state.messages[-1][-1] = None
    prev_human_msg = state.messages[-2]
    if type(prev_human_msg[1]) in (tuple, list):
        prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "", None)


def clear_history():
    state = default_conversation.copy()
    return (state, state.to_gradio_chatbot(), "", None)


def add_text(state, text, image, image_process_mode):
    if len(text) <= 0 and image is None:
        state.skip_next = True
        return (state, state.to_gradio_chatbot(), "", None)

    text = text[:1536]  # Hard cut-off
    if image is not None:
        text = text[:1200]  # Hard cut-off for images
        if '<image>' not in text:
            # text = '<Image><image></Image>' + text
            text = text + '\n<image>'
        text = (text, image, image_process_mode)
        if len(state.get_images(return_pil=True)) > 0:
            state = default_conversation.copy()
    state.append_message(state.roles[0], text)
    state.append_message(state.roles[1], None)
    state.skip_next = False
    return (state, state.to_gradio_chatbot(), "", None)


def load_demo():
    state = default_conversation.copy()
    return state


@torch.inference_mode()
def get_response(params):
    prompt = params["prompt"]
    ori_prompt = prompt
    images = params.get("images", None)
    num_image_tokens = 0
    if images is not None and len(images) > 0:
        if len(images) > 0:
            if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN):
                raise ValueError(
                    "Number of images does not match number of <image> tokens in prompt")

            images = [load_image_from_base64(image) for image in images]
            images = process_images(images, image_processor, model.config)

            if type(images) is list:
                images = [image.to(model.device, dtype=torch.float16)
                          for image in images]
            else:
                images = images.to(model.device, dtype=torch.float16)

            replace_token = DEFAULT_IMAGE_TOKEN
            if getattr(model.config, 'mm_use_im_start_end', False):
                replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
            prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)

            num_image_tokens = prompt.count(
                replace_token) * model.get_vision_tower().num_patches
        else:
            images = None
        image_args = {"images": images}
    else:
        images = None
        image_args = {}

    temperature = float(params.get("temperature", 1.0))
    top_p = float(params.get("top_p", 1.0))
    max_context_length = getattr(
        model.config, 'max_position_embeddings', 2048)
    max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
    stop_str = params.get("stop", None)
    do_sample = True if temperature > 0.001 else False

    input_ids = tokenizer_image_token(
        prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(model.device)
    keywords = [stop_str]
    stopping_criteria = KeywordsStoppingCriteria(
        keywords, tokenizer, input_ids)
    streamer = TextIteratorStreamer(
        tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15)

    max_new_tokens = min(max_new_tokens, max_context_length -
                         input_ids.shape[-1] - num_image_tokens)

    if max_new_tokens < 1:
        yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0"
        return

    # local inference
    thread = Thread(target=model.generate, kwargs=dict(
        inputs=input_ids,
        do_sample=do_sample,
        temperature=temperature,
        top_p=top_p,
        max_new_tokens=max_new_tokens,
        streamer=streamer,
        stopping_criteria=[stopping_criteria],
        use_cache=True,
        **image_args
    ))
    thread.start()

    generated_text = ori_prompt
    for new_text in streamer:
        generated_text += new_text
        if generated_text.endswith(stop_str):
            generated_text = generated_text[:-len(stop_str)]
        yield json.dumps({"text": generated_text, "error_code": 0}).encode()


def http_bot(state, temperature, top_p, max_new_tokens):
    if state.skip_next:
        # This generate call is skipped due to invalid inputs
        yield (state, state.to_gradio_chatbot())
        return

    if len(state.messages) == state.offset + 2:
        # First round of conversation
        if "llava" in model_name.lower():
            if 'llama-2' in model_name.lower():
                template_name = "llava_llama_2"
            elif "v1" in model_name.lower():
                if 'mmtag' in model_name.lower():
                    template_name = "v1_mmtag"
                elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
                    template_name = "v1_mmtag"
                else:
                    template_name = "llava_v1"
            elif "mpt" in model_name.lower():
                template_name = "mpt"
            else:
                if 'mmtag' in model_name.lower():
                    template_name = "v0_mmtag"
                elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower():
                    template_name = "v0_mmtag"
                else:
                    template_name = "llava_v0"
        elif "mpt" in model_name:
            template_name = "mpt_text"
        elif "llama-2" in model_name:
            template_name = "llama_2"
        else:
            template_name = "vicuna_v1"
        new_state = conv_templates[template_name].copy()
        new_state.append_message(new_state.roles[0], state.messages[-2][1])
        new_state.append_message(new_state.roles[1], None)
        state = new_state

    # Construct prompt
    prompt = state.get_prompt()

    all_images = state.get_images(return_pil=True)
    all_image_hash = [hashlib.md5(image.tobytes()).hexdigest()
                      for image in all_images]

    # Make requests
    pload = {
        "model": model_name,
        "prompt": prompt,
        "temperature": float(temperature),
        "top_p": float(top_p),
        "max_new_tokens": min(int(max_new_tokens), 1536),
        "stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
        "images": f'List of {len(state.get_images())} images: {all_image_hash}',
    }

    pload['images'] = state.get_images()

    state.messages[-1][-1] = "β–Œ"
    yield (state, state.to_gradio_chatbot())

    # for stream
    output = get_response(pload)
    for chunk in output:
        if chunk:
            data = json.loads(chunk.decode())
            if data["error_code"] == 0:
                output = data["text"][len(prompt):].strip()
                state.messages[-1][-1] = output + "β–Œ"
                yield (state, state.to_gradio_chatbot())
            else:
                output = data["text"] + \
                    f" (error_code: {data['error_code']})"
                state.messages[-1][-1] = output
                yield (state, state.to_gradio_chatbot())
                return
            time.sleep(0.03)

    state.messages[-1][-1] = state.messages[-1][-1][:-1]
    yield (state, state.to_gradio_chatbot())


def build_demo():
    textbox = gr.Textbox(
        show_label=False, placeholder="Enter text and press ENTER", container=False)
    with gr.Blocks(title="ShareGPT4V", theme=gr.themes.Default(), css=block_css) as demo:
        state = gr.State()
        gr.Markdown(title_markdown)

        with gr.Row():
            with gr.Column(scale=5):
                with gr.Row(elem_id="Model ID"):
                    gr.Dropdown(
                        choices=['ShareGPT4V-7B'],
                        value='ShareGPT4V-7B',
                        interactive=True,
                        label='Model ID',
                        container=False)
                imagebox = gr.Image(type="pil")
                image_process_mode = gr.Radio(
                    ["Crop", "Resize", "Pad", "Default"],
                    value="Default",
                    label="Preprocess for non-square image", visible=False)

                cur_dir = os.path.dirname(os.path.abspath(__file__))
                gr.Examples(examples=[
                    [f"{cur_dir}/examples/breaking_bad.png",
                        "What is the most common catchphrase of the character on the right?"],
                    [f"{cur_dir}/examples/photo.png",
                        "From a photography perspective, analyze what makes this picture beautiful?"],
                ], inputs=[imagebox, textbox])

                with gr.Accordion("Parameters", open=False) as _:
                    temperature = gr.Slider(
                        minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
                    top_p = gr.Slider(
                        minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",)
                    max_output_tokens = gr.Slider(
                        minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)

            with gr.Column(scale=8):
                chatbot = gr.Chatbot(
                    elem_id="chatbot", label="ShareGPT4V Chatbot", height=550)
                with gr.Row():
                    with gr.Column(scale=8):
                        textbox.render()
                    with gr.Column(scale=1, min_width=50):
                        submit_btn = gr.Button(value="Send", variant="primary")
                with gr.Row(elem_id="buttons") as _:
                    regenerate_btn = gr.Button(
                        value="πŸ”„  Regenerate", interactive=True)
                    clear_btn = gr.Button(value="πŸ—‘οΈ  Clear", interactive=True)

        gr.Markdown(tos_markdown)
        gr.Markdown(learn_more_markdown)
        gr.Markdown(ack_markdown)

        regenerate_btn.click(
            regenerate,
            [state, image_process_mode],
            [state, chatbot, textbox, imagebox],
            queue=False
        ).then(
            http_bot,
            [state, temperature, top_p, max_output_tokens],
            [state, chatbot]
        )

        clear_btn.click(
            clear_history,
            None,
            [state, chatbot, textbox, imagebox],
            queue=False
        )

        textbox.submit(
            add_text,
            [state, textbox, imagebox, image_process_mode],
            [state, chatbot, textbox, imagebox],
            queue=False
        ).then(
            http_bot,
            [state, temperature, top_p, max_output_tokens],
            [state, chatbot]
        )

        submit_btn.click(
            add_text,
            [state, textbox, imagebox, image_process_mode],
            [state, chatbot, textbox, imagebox],
            queue=False
        ).then(
            http_bot,
            [state, temperature, top_p, max_output_tokens],
            [state, chatbot]
        )

        demo.load(
            load_demo,
            None,
            [state],
            queue=False
        )
    return demo


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int, default=7860)
    parser.add_argument("--share", default=True)
    parser.add_argument("--model-path", type=str,
                        default="Lin-Chen/ShareGPT4V-7B")
    parser.add_argument("--model-name", type=str,
                        default="llava-v1.5-7b")
    args = parser.parse_args()
    return args


if __name__ == '__main__':
    args = parse_args()
    model_name = args.model_name
    tokenizer, model, image_processor, context_len = load_pretrained_model(
        args.model_path, None, args.model_name, False, False)
    demo = build_demo()
    demo.queue()
    demo.launch(server_name=args.host,
                server_port=args.port,
                share=args.share)