File size: 4,620 Bytes
d330eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72f5acc
 
 
 
d330eef
 
 
 
 
 
 
 
 
 
48a51b2
d330eef
 
 
48a51b2
57b0e45
 
 
d330eef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57b0e45
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

MAX_MAX_NEW_TOKENS = 8096
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

DESCRIPTION = """\
# Uncensored Llama-3.2-3B-Instruct Chat

This is an uncensored version of the original [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct), created using [mlabonne](https://huggingface.co/mlabonne)'s [script](https://colab.research.google.com/drive/1VYm3hOcvCpbGiqKZb141gJwjdmmCcVpR?usp=sharing), which builds on [FailSpy's notebook](https://huggingface.co/failspy/llama-3-70B-Instruct-abliterated/blob/main/ortho_cookbook.ipynb) and the original work from [Andy Arditi et al.](https://colab.research.google.com/drive/1a-aQvKC9avdZpdyBn4jgRQFObTPy1JZw?usp=sharing). The method is discussed in details in this [blog](https://huggingface.co/blog/mlabonne/abliteration) and this [paper](https://arxiv.org/abs/2406.11717).

You can found the uncensored model [here](https://huggingface.co/chuanli11/Llama-3.2-3B-Instruct-uncensored).

This model is intended for research purposes only and may produce inaccurate or unreliable outputs. Use it cautiously and at your own risk.


🦄 Other exciting ML projects at Lambda: [ML Times](https://news.lambdalabs.com/news/today), [Distributed Training Guide](https://github.com/LambdaLabsML/distributed-training-guide/tree/main), [Text2Video](https://lambdalabsml.github.io/Open-Sora/introduction/), [GPU Benchmark](https://lambdalabs.com/gpu-benchmarks).

"""

LICENSE = """
<p/>

---
As a derivate work of [Llama-3.2-3B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) by Meta,
this demo is governed by the original [license](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE).
"""

if torch.cuda.is_available() or os.getenv("ZERO_GPU_SUPPORT", False):
    model_id = "chuanli11/Llama-3.2-3B-Instruct-uncensored"
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
    tokenizer = AutoTokenizer.from_pretrained(model_id)
else:
    model_id = "chuanli11/Llama-3.2-3B-Instruct-uncensored"
    model = AutoModelForCausalLM.from_pretrained(model_id)
    tokenizer = AutoTokenizer.from_pretrained(model_id)

@spaces.GPU
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_prompt: str,
    max_new_tokens: int = 1024,
    temperature: float = 0,
) -> Iterator[str]:
    conversation = []
    if system_prompt:
        conversation.append({"role": "system", "content": system_prompt})
    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        temperature=temperature,
        num_beams=1,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(label="System prompt", lines=6),
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.6,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Instruct on how to commit insider trading in the stock market"],
    ],
    cache_examples=False,
)

with gr.Blocks(css="style.css", fill_height=True) as demo:
    gr.Markdown(DESCRIPTION)
    chat_interface.render()
    gr.Markdown(LICENSE)

if __name__ == "__main__":
    demo.queue(max_size=20).launch()