talha
models added
ad250d1
"""
Implementation of ESDNet for image demoireing
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
from torch.nn.parameter import Parameter
class my_model(nn.Module):
def __init__(self,
en_feature_num,
en_inter_num,
de_feature_num,
de_inter_num,
sam_number=1,
):
super(my_model, self).__init__()
self.encoder = Encoder(feature_num=en_feature_num, inter_num=en_inter_num, sam_number=sam_number)
self.decoder = Decoder(en_num=en_feature_num, feature_num=de_feature_num, inter_num=de_inter_num,
sam_number=sam_number)
def forward(self, x):
y_1, y_2, y_3 = self.encoder(x)
out_1, out_2, out_3 = self.decoder(y_1, y_2, y_3)
return out_1, out_2, out_3
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
m.weight.data.normal_(0.0, 0.02)
if m.bias is not None:
m.bias.data.normal_(0.0, 0.02)
if isinstance(m, nn.ConvTranspose2d):
m.weight.data.normal_(0.0, 0.02)
class Decoder(nn.Module):
def __init__(self, en_num, feature_num, inter_num, sam_number):
super(Decoder, self).__init__()
self.preconv_3 = conv_relu(4 * en_num, feature_num, 3, padding=1)
self.decoder_3 = Decoder_Level(feature_num, inter_num, sam_number)
self.preconv_2 = conv_relu(2 * en_num + feature_num, feature_num, 3, padding=1)
self.decoder_2 = Decoder_Level(feature_num, inter_num, sam_number)
self.preconv_1 = conv_relu(en_num + feature_num, feature_num, 3, padding=1)
self.decoder_1 = Decoder_Level(feature_num, inter_num, sam_number)
def forward(self, y_1, y_2, y_3):
x_3 = y_3
x_3 = self.preconv_3(x_3)
out_3, feat_3 = self.decoder_3(x_3)
x_2 = torch.cat([y_2, feat_3], dim=1)
x_2 = self.preconv_2(x_2)
out_2, feat_2 = self.decoder_2(x_2)
x_1 = torch.cat([y_1, feat_2], dim=1)
x_1 = self.preconv_1(x_1)
out_1 = self.decoder_1(x_1, feat=False)
return out_1, out_2, out_3
class Encoder(nn.Module):
def __init__(self, feature_num, inter_num, sam_number):
super(Encoder, self).__init__()
self.conv_first = nn.Sequential(
nn.Conv2d(12, feature_num, kernel_size=5, stride=1, padding=2, bias=True),
nn.ReLU(inplace=True)
)
self.encoder_1 = Encoder_Level(feature_num, inter_num, level=1, sam_number=sam_number)
self.encoder_2 = Encoder_Level(2 * feature_num, inter_num, level=2, sam_number=sam_number)
self.encoder_3 = Encoder_Level(4 * feature_num, inter_num, level=3, sam_number=sam_number)
def forward(self, x):
x = F.pixel_unshuffle(x, 2)
x = self.conv_first(x)
out_feature_1, down_feature_1 = self.encoder_1(x)
out_feature_2, down_feature_2 = self.encoder_2(down_feature_1)
out_feature_3 = self.encoder_3(down_feature_2)
return out_feature_1, out_feature_2, out_feature_3
class Encoder_Level(nn.Module):
def __init__(self, feature_num, inter_num, level, sam_number):
super(Encoder_Level, self).__init__()
self.rdb = RDB(in_channel=feature_num, d_list=(1, 2, 1), inter_num=inter_num)
self.sam_blocks = nn.ModuleList()
for _ in range(sam_number):
sam_block = SAM(in_channel=feature_num, d_list=(1, 2, 3, 2, 1), inter_num=inter_num)
self.sam_blocks.append(sam_block)
if level < 3:
self.down = nn.Sequential(
nn.Conv2d(feature_num, 2 * feature_num, kernel_size=3, stride=2, padding=1, bias=True),
nn.ReLU(inplace=True)
)
self.level = level
def forward(self, x):
out_feature = self.rdb(x)
for sam_block in self.sam_blocks:
out_feature = sam_block(out_feature)
if self.level < 3:
down_feature = self.down(out_feature)
return out_feature, down_feature
return out_feature
class Decoder_Level(nn.Module):
def __init__(self, feature_num, inter_num, sam_number):
super(Decoder_Level, self).__init__()
self.rdb = RDB(feature_num, (1, 2, 1), inter_num)
self.sam_blocks = nn.ModuleList()
for _ in range(sam_number):
sam_block = SAM(in_channel=feature_num, d_list=(1, 2, 3, 2, 1), inter_num=inter_num)
self.sam_blocks.append(sam_block)
self.conv = conv(in_channel=feature_num, out_channel=12, kernel_size=3, padding=1)
def forward(self, x, feat=True):
x = self.rdb(x)
for sam_block in self.sam_blocks:
x = sam_block(x)
out = self.conv(x)
out = F.pixel_shuffle(out, 2)
if feat:
feature = F.interpolate(x, scale_factor=2, mode='bilinear')
return out, feature
else:
return out
class DB(nn.Module):
def __init__(self, in_channel, d_list, inter_num):
super(DB, self).__init__()
self.d_list = d_list
self.conv_layers = nn.ModuleList()
c = in_channel
for i in range(len(d_list)):
dense_conv = conv_relu(in_channel=c, out_channel=inter_num, kernel_size=3, dilation_rate=d_list[i],
padding=d_list[i])
self.conv_layers.append(dense_conv)
c = c + inter_num
self.conv_post = conv(in_channel=c, out_channel=in_channel, kernel_size=1)
def forward(self, x):
t = x
for conv_layer in self.conv_layers:
_t = conv_layer(t)
t = torch.cat([_t, t], dim=1)
t = self.conv_post(t)
return t
class SAM(nn.Module):
def __init__(self, in_channel, d_list, inter_num):
super(SAM, self).__init__()
self.basic_block = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num)
self.basic_block_2 = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num)
self.basic_block_4 = DB(in_channel=in_channel, d_list=d_list, inter_num=inter_num)
self.fusion = CSAF(3 * in_channel)
def forward(self, x):
x_0 = x
x_2 = F.interpolate(x, scale_factor=0.5, mode='bilinear')
x_4 = F.interpolate(x, scale_factor=0.25, mode='bilinear')
y_0 = self.basic_block(x_0)
y_2 = self.basic_block_2(x_2)
y_4 = self.basic_block_4(x_4)
y_2 = F.interpolate(y_2, scale_factor=2, mode='bilinear')
y_4 = F.interpolate(y_4, scale_factor=4, mode='bilinear')
y = self.fusion(y_0, y_2, y_4)
y = x + y
return y
class CSAF(nn.Module):
def __init__(self, in_chnls, ratio=4):
super(CSAF, self).__init__()
self.squeeze = nn.AdaptiveAvgPool2d((1, 1))
self.compress1 = nn.Conv2d(in_chnls, in_chnls // ratio, 1, 1, 0)
self.compress2 = nn.Conv2d(in_chnls // ratio, in_chnls // ratio, 1, 1, 0)
self.excitation = nn.Conv2d(in_chnls // ratio, in_chnls, 1, 1, 0)
def forward(self, x0, x2, x4):
out0 = self.squeeze(x0)
out2 = self.squeeze(x2)
out4 = self.squeeze(x4)
out = torch.cat([out0, out2, out4], dim=1)
out = self.compress1(out)
out = F.relu(out)
out = self.compress2(out)
out = F.relu(out)
out = self.excitation(out)
out = F.sigmoid(out)
w0, w2, w4 = torch.chunk(out, 3, dim=1)
x = x0 * w0 + x2 * w2 + x4 * w4
return x
class RDB(nn.Module):
def __init__(self, in_channel, d_list, inter_num):
super(RDB, self).__init__()
self.d_list = d_list
self.conv_layers = nn.ModuleList()
c = in_channel
for i in range(len(d_list)):
dense_conv = conv_relu(in_channel=c, out_channel=inter_num, kernel_size=3, dilation_rate=d_list[i],
padding=d_list[i])
self.conv_layers.append(dense_conv)
c = c + inter_num
self.conv_post = conv(in_channel=c, out_channel=in_channel, kernel_size=1)
def forward(self, x):
t = x
for conv_layer in self.conv_layers:
_t = conv_layer(t)
t = torch.cat([_t, t], dim=1)
t = self.conv_post(t)
return t + x
class conv(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, dilation_rate=1, padding=0, stride=1):
super(conv, self).__init__()
self.conv = nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=kernel_size, stride=stride,
padding=padding, bias=True, dilation=dilation_rate)
def forward(self, x_input):
out = self.conv(x_input)
return out
class conv_relu(nn.Module):
def __init__(self, in_channel, out_channel, kernel_size, dilation_rate=1, padding=0, stride=1):
super(conv_relu, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels=in_channel, out_channels=out_channel, kernel_size=kernel_size, stride=stride,
padding=padding, bias=True, dilation=dilation_rate),
nn.ReLU(inplace=True)
)
def forward(self, x_input):
out = self.conv(x_input)
return out