Spaces:
Build error
Build error
SaiShailesh
commited on
Upload 2 files
Browse files- app.py +138 -0
- requirements.txt +139 -0
app.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from diffusers import DDPMScheduler, UNet2DModel
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from tqdm.auto import tqdm
|
7 |
+
|
8 |
+
# Reuse your existing model code
|
9 |
+
class ClassConditionedUnet(nn.Module):
|
10 |
+
def __init__(self, num_classes=3, class_emb_size=12):
|
11 |
+
super().__init__()
|
12 |
+
self.class_emb = nn.Embedding(num_classes, class_emb_size)
|
13 |
+
self.model = UNet2DModel(
|
14 |
+
sample_size=64,
|
15 |
+
in_channels=3 + class_emb_size,
|
16 |
+
out_channels=3,
|
17 |
+
layers_per_block=2,
|
18 |
+
block_out_channels=(64, 128, 256, 512),
|
19 |
+
down_block_types=(
|
20 |
+
"DownBlock2D",
|
21 |
+
"DownBlock2D",
|
22 |
+
"AttnDownBlock2D",
|
23 |
+
"AttnDownBlock2D",
|
24 |
+
),
|
25 |
+
up_block_types=(
|
26 |
+
"AttnUpBlock2D",
|
27 |
+
"AttnUpBlock2D",
|
28 |
+
"UpBlock2D",
|
29 |
+
"UpBlock2D",
|
30 |
+
),
|
31 |
+
)
|
32 |
+
|
33 |
+
def forward(self, x, t, class_labels):
|
34 |
+
bs, ch, w, h = x.shape
|
35 |
+
class_cond = self.class_emb(class_labels)
|
36 |
+
class_cond = class_cond.view(bs, class_cond.shape[1], 1, 1).expand(bs, class_cond.shape[1], w, h)
|
37 |
+
net_input = torch.cat((x, class_cond), 1)
|
38 |
+
return self.model(net_input, t).sample
|
39 |
+
|
40 |
+
@st.cache_resource
|
41 |
+
def load_model(model_path):
|
42 |
+
"""Load the model with caching to avoid reloading"""
|
43 |
+
device = 'cpu' # For deployment, we'll use CPU
|
44 |
+
net = ClassConditionedUnet().to(device)
|
45 |
+
noise_scheduler = DDPMScheduler(num_train_timesteps=1000, beta_schedule='squaredcos_cap_v2')
|
46 |
+
checkpoint = torch.load(model_path, map_location='cpu')
|
47 |
+
net.load_state_dict(checkpoint['model_state_dict'])
|
48 |
+
return net, noise_scheduler
|
49 |
+
|
50 |
+
def generate_mixed_faces(net, noise_scheduler, mix_weights, num_images=1):
|
51 |
+
"""Generate faces with mixed ethnic features"""
|
52 |
+
device = next(net.parameters()).device
|
53 |
+
net.eval()
|
54 |
+
with torch.no_grad():
|
55 |
+
x = torch.randn(num_images, 3, 64, 64).to(device)
|
56 |
+
|
57 |
+
# Get embeddings for all classes
|
58 |
+
emb_asian = net.class_emb(torch.zeros(num_images).long().to(device))
|
59 |
+
emb_indian = net.class_emb(torch.ones(num_images).long().to(device))
|
60 |
+
emb_european = net.class_emb(torch.full((num_images,), 2).to(device))
|
61 |
+
|
62 |
+
progress_bar = st.progress(0)
|
63 |
+
for idx, t in enumerate(noise_scheduler.timesteps):
|
64 |
+
# Update progress bar
|
65 |
+
progress_bar.progress(idx / len(noise_scheduler.timesteps))
|
66 |
+
|
67 |
+
# Mix embeddings according to weights
|
68 |
+
mixed_emb = (
|
69 |
+
mix_weights[0] * emb_asian +
|
70 |
+
mix_weights[1] * emb_indian +
|
71 |
+
mix_weights[2] * emb_european
|
72 |
+
)
|
73 |
+
|
74 |
+
# Override embedding layer temporarily
|
75 |
+
original_forward = net.class_emb.forward
|
76 |
+
net.class_emb.forward = lambda _: mixed_emb
|
77 |
+
|
78 |
+
residual = net(x, t, torch.zeros(num_images).long().to(device))
|
79 |
+
x = noise_scheduler.step(residual, t, x).prev_sample
|
80 |
+
|
81 |
+
# Restore original embedding layer
|
82 |
+
net.class_emb.forward = original_forward
|
83 |
+
|
84 |
+
progress_bar.progress(1.0)
|
85 |
+
|
86 |
+
x = (x.clamp(-1, 1) + 1) / 2
|
87 |
+
return x
|
88 |
+
|
89 |
+
def main():
|
90 |
+
st.title("AI Face Generator with Ethnic Features Mixing")
|
91 |
+
|
92 |
+
# Load model
|
93 |
+
try:
|
94 |
+
net, noise_scheduler = load_model('final_model/final_diffusion_model.pt')
|
95 |
+
except Exception as e:
|
96 |
+
st.error(f"Error loading model: {str(e)}")
|
97 |
+
return
|
98 |
+
|
99 |
+
# Create sliders for ethnicity percentages
|
100 |
+
st.subheader("Adjust Ethnicity Mix")
|
101 |
+
col1, col2, col3 = st.columns(3)
|
102 |
+
|
103 |
+
with col1:
|
104 |
+
asian_pct = st.slider("Asian Features %", 0, 100, 33, 1)
|
105 |
+
with col2:
|
106 |
+
indian_pct = st.slider("Indian Features %", 0, 100, 33, 1)
|
107 |
+
with col3:
|
108 |
+
european_pct = st.slider("European Features %", 0, 100, 34, 1)
|
109 |
+
|
110 |
+
# Calculate total and normalize if needed
|
111 |
+
total = asian_pct + indian_pct + european_pct
|
112 |
+
if total == 0:
|
113 |
+
st.warning("Total percentage cannot be 0%. Please adjust the sliders.")
|
114 |
+
return
|
115 |
+
|
116 |
+
# Normalize weights to sum to 1
|
117 |
+
weights = [asian_pct/total, indian_pct/total, european_pct/total]
|
118 |
+
|
119 |
+
# Display current mix
|
120 |
+
st.write("Current mix (normalized):")
|
121 |
+
st.write(f"Asian: {weights[0]:.2%}, Indian: {weights[1]:.2%}, European: {weights[2]:.2%}")
|
122 |
+
|
123 |
+
# Generate button
|
124 |
+
if st.button("Generate Face"):
|
125 |
+
try:
|
126 |
+
with st.spinner("Generating face..."):
|
127 |
+
# Generate the image
|
128 |
+
generated_images = generate_mixed_faces(net, noise_scheduler, weights)
|
129 |
+
|
130 |
+
# Convert to numpy and display
|
131 |
+
img = generated_images[0].permute(1, 2, 0).cpu().numpy()
|
132 |
+
st.image(img, caption="Generated Face", use_column_width=True)
|
133 |
+
|
134 |
+
except Exception as e:
|
135 |
+
st.error(f"Error generating image: {str(e)}")
|
136 |
+
|
137 |
+
if __name__ == "__main__":
|
138 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.34.2
|
2 |
+
aiohappyeyeballs==2.4.0
|
3 |
+
aiohttp==3.10.5
|
4 |
+
aiosignal==1.3.1
|
5 |
+
altair==5.4.1
|
6 |
+
annotated-types==0.7.0
|
7 |
+
anyio==4.4.0
|
8 |
+
asttokens==2.4.1
|
9 |
+
async-timeout==4.0.3
|
10 |
+
attrs==24.2.0
|
11 |
+
blinker==1.8.2
|
12 |
+
boto3==1.35.54
|
13 |
+
botocore==1.35.54
|
14 |
+
cachetools==5.5.0
|
15 |
+
certifi==2024.8.30
|
16 |
+
charset-normalizer==3.3.2
|
17 |
+
click==8.1.7
|
18 |
+
colorama==0.4.6
|
19 |
+
comm==0.2.2
|
20 |
+
contourpy==1.3.1
|
21 |
+
cycler==0.12.1
|
22 |
+
databricks-api==0.9.0
|
23 |
+
databricks-cli==0.18.0
|
24 |
+
dataclasses==0.6
|
25 |
+
debugpy==1.8.5
|
26 |
+
decorator==5.1.1
|
27 |
+
diffusers==0.31.0
|
28 |
+
exceptiongroup==1.2.2
|
29 |
+
executing==2.1.0
|
30 |
+
faiss-cpu==1.8.0.post1
|
31 |
+
filelock==3.16.0
|
32 |
+
fonttools==4.55.3
|
33 |
+
frozenlist==1.4.1
|
34 |
+
fsspec==2024.9.0
|
35 |
+
gitdb==4.0.11
|
36 |
+
GitPython==3.1.43
|
37 |
+
greenlet==3.1.0
|
38 |
+
h11==0.14.0
|
39 |
+
httpcore==1.0.5
|
40 |
+
httpx==0.27.2
|
41 |
+
huggingface==0.0.1
|
42 |
+
huggingface-hub==0.24.7
|
43 |
+
idna==3.10
|
44 |
+
importlib_metadata==8.5.0
|
45 |
+
ipykernel==6.29.5
|
46 |
+
ipython==8.27.0
|
47 |
+
jedi==0.19.1
|
48 |
+
Jinja2==3.1.4
|
49 |
+
jmespath==1.0.1
|
50 |
+
joblib==1.4.2
|
51 |
+
johnsnowlabs==5.5.0
|
52 |
+
jsonpatch==1.33
|
53 |
+
jsonpointer==3.0.0
|
54 |
+
jsonschema==4.23.0
|
55 |
+
jsonschema-specifications==2023.12.1
|
56 |
+
jupyter_client==8.6.3
|
57 |
+
jupyter_core==5.7.2
|
58 |
+
kiwisolver==1.4.7
|
59 |
+
langchain==0.3.0
|
60 |
+
langchain-core==0.3.0
|
61 |
+
langchain-text-splitters==0.3.0
|
62 |
+
langsmith==0.1.121
|
63 |
+
markdown-it-py==3.0.0
|
64 |
+
MarkupSafe==2.1.5
|
65 |
+
matplotlib==3.9.3
|
66 |
+
matplotlib-inline==0.1.7
|
67 |
+
mdurl==0.1.2
|
68 |
+
mpmath==1.3.0
|
69 |
+
multidict==6.1.0
|
70 |
+
narwhals==1.8.1
|
71 |
+
nest-asyncio==1.6.0
|
72 |
+
networkx==3.3
|
73 |
+
nlu==5.4.1
|
74 |
+
numpy==1.26.4
|
75 |
+
oauthlib==3.2.2
|
76 |
+
orjson==3.10.7
|
77 |
+
packaging==24.1
|
78 |
+
pandas==2.2.2
|
79 |
+
parso==0.8.4
|
80 |
+
pillow==10.4.0
|
81 |
+
platformdirs==4.3.3
|
82 |
+
prompt_toolkit==3.0.47
|
83 |
+
protobuf==5.28.1
|
84 |
+
psutil==6.0.0
|
85 |
+
pure_eval==0.2.3
|
86 |
+
py4j==0.10.9
|
87 |
+
pyarrow==17.0.0
|
88 |
+
pydantic==2.9.1
|
89 |
+
pydantic_core==2.23.3
|
90 |
+
pydeck==0.9.1
|
91 |
+
Pygments==2.18.0
|
92 |
+
PyJWT==2.9.0
|
93 |
+
pyparsing==3.2.0
|
94 |
+
pyspark==3.0.2
|
95 |
+
python-dateutil==2.9.0.post0
|
96 |
+
pytz==2024.2
|
97 |
+
pywin32==306
|
98 |
+
PyYAML==6.0.2
|
99 |
+
pyzmq==26.2.0
|
100 |
+
referencing==0.35.1
|
101 |
+
regex==2024.9.11
|
102 |
+
requests==2.32.3
|
103 |
+
rich==13.8.1
|
104 |
+
rpds-py==0.20.0
|
105 |
+
s3transfer==0.10.3
|
106 |
+
safetensors==0.4.5
|
107 |
+
scikit-learn==1.5.2
|
108 |
+
scipy==1.14.1
|
109 |
+
sentence-transformers==3.1.0
|
110 |
+
six==1.16.0
|
111 |
+
smmap==5.0.1
|
112 |
+
sniffio==1.3.1
|
113 |
+
spark-nlp==5.5.0
|
114 |
+
spark-nlp-display==5.0
|
115 |
+
SQLAlchemy==2.0.35
|
116 |
+
stack-data==0.6.3
|
117 |
+
streamlit==1.38.0
|
118 |
+
streamlit-chat==0.1.1
|
119 |
+
svgwrite==1.4
|
120 |
+
sympy==1.13.1
|
121 |
+
tabulate==0.9.0
|
122 |
+
tenacity==8.5.0
|
123 |
+
threadpoolctl==3.5.0
|
124 |
+
tiktoken==0.7.0
|
125 |
+
tokenizers==0.19.1
|
126 |
+
toml==0.10.2
|
127 |
+
torch==2.5.1
|
128 |
+
torchvision==0.20.1
|
129 |
+
tornado==6.4.1
|
130 |
+
tqdm==4.66.5
|
131 |
+
traitlets==5.14.3
|
132 |
+
transformers==4.44.2
|
133 |
+
typing_extensions==4.12.2
|
134 |
+
tzdata==2024.1
|
135 |
+
urllib3==2.2.3
|
136 |
+
watchdog==4.0.2
|
137 |
+
wcwidth==0.2.13
|
138 |
+
yarl==1.11.1
|
139 |
+
zipp==3.21.0
|