Spaces:
Sleeping
Sleeping
import os | |
from langchain_experimental.text_splitter import SemanticChunker | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain_chroma import Chroma | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from PyPDF2 import PdfReader | |
from langchain.docstore.document import Document | |
embedding_modelPath = "sentence-transformers/all-MiniLM-l6-v2" | |
embeddings = HuggingFaceEmbeddings(model_name=embedding_modelPath,model_kwargs = {'device':'cpu'},encode_kwargs = {'normalize_embeddings': False}) | |
def replace_t_with_space(list_of_documents): | |
""" | |
Replaces all tab characters ('\t') with spaces in the page content of each document. | |
Args: | |
list_of_documents: A list of document objects, each with a 'page_content' attribute. | |
Returns: | |
The modified list of documents with tab characters replaced by spaces. | |
""" | |
for doc in list_of_documents: | |
doc.page_content = doc.page_content.replace('\t', ' ') # Replace tabs with spaces | |
return list_of_documents | |
def read_pdf_text(pdf_path): | |
text = "" | |
pdf_reader = PdfReader(pdf_path) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) | |
text_chunks = text_splitter.split_text(text) | |
text_docs = [Document(page_content=txt) for txt in text_chunks] | |
return text_docs | |
def read_pdf(pdf_path): | |
loader = PyPDFLoader(pdf_path) | |
docs = loader.load() | |
print("Total Documents :",len(docs)) | |
return docs | |
def Chunks(docs): | |
text_splitter = SemanticChunker(embeddings,breakpoint_threshold_type='interquartile') | |
docs = text_splitter.split_documents(docs) | |
cleaned_docs = replace_t_with_space(docs) | |
return cleaned_docs | |
def PDF_4_QA(file_path): | |
#docs = read_pdf(file_path) | |
#cleaned_docs = Chunks(docs) | |
cleaned_docs = read_pdf_text(file_path) | |
vectordb = Chroma.from_documents(cleaned_docs,embedding=embeddings,persist_directory="Chroma/docs") | |
return vectordb,cleaned_docs |