import os from langchain_experimental.text_splitter import SemanticChunker from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_chroma import Chroma from langchain_community.document_loaders import PyPDFLoader from langchain.embeddings import HuggingFaceEmbeddings from PyPDF2 import PdfReader from langchain.docstore.document import Document embedding_modelPath = "sentence-transformers/all-MiniLM-l6-v2" embeddings = HuggingFaceEmbeddings(model_name=embedding_modelPath,model_kwargs = {'device':'cpu'},encode_kwargs = {'normalize_embeddings': False}) def replace_t_with_space(list_of_documents): """ Replaces all tab characters ('\t') with spaces in the page content of each document. Args: list_of_documents: A list of document objects, each with a 'page_content' attribute. Returns: The modified list of documents with tab characters replaced by spaces. """ for doc in list_of_documents: doc.page_content = doc.page_content.replace('\t', ' ') # Replace tabs with spaces return list_of_documents def read_pdf_text(pdf_path): text = "" pdf_reader = PdfReader(pdf_path) for page in pdf_reader.pages: text += page.extract_text() text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000) text_chunks = text_splitter.split_text(text) text_docs = [Document(page_content=txt) for txt in text_chunks] return text_docs def read_pdf(pdf_path): loader = PyPDFLoader(pdf_path) docs = loader.load() print("Total Documents :",len(docs)) return docs def Chunks(docs): text_splitter = SemanticChunker(embeddings,breakpoint_threshold_type='interquartile') docs = text_splitter.split_documents(docs) cleaned_docs = replace_t_with_space(docs) return cleaned_docs def PDF_4_QA(file_path): #docs = read_pdf(file_path) #cleaned_docs = Chunks(docs) cleaned_docs = read_pdf_text(file_path) vectordb = Chroma.from_documents(cleaned_docs,embedding=embeddings,persist_directory="Chroma/docs") return vectordb,cleaned_docs