|
import asyncio
|
|
import logging
|
|
from typing import List, Optional, Sequence
|
|
|
|
from langchain_core.callbacks import (
|
|
AsyncCallbackManagerForRetrieverRun,
|
|
CallbackManagerForRetrieverRun,
|
|
)
|
|
from langchain_core.documents import Document
|
|
from langchain_core.language_models import BaseLanguageModel
|
|
from langchain_core.output_parsers import BaseOutputParser
|
|
from langchain_core.prompts.prompt import PromptTemplate
|
|
from langchain_core.retrievers import BaseRetriever
|
|
|
|
from langchain.chains.llm import LLMChain
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class LineListOutputParser(BaseOutputParser[List[str]]):
|
|
"""Output parser for a list of lines."""
|
|
|
|
def parse(self, text: str) -> List[str]:
|
|
lines = text.strip().split("\n")
|
|
return lines
|
|
|
|
|
|
|
|
DEFAULT_QUERY_PROMPT = PromptTemplate(
|
|
input_variables=["question"],
|
|
template="""You are an AI language model assistant. Your task is
|
|
to generate 3 different versions of the given user
|
|
question to retrieve relevant documents from a vector database.
|
|
By generating multiple perspectives on the user question,
|
|
your goal is to help the user overcome some of the limitations
|
|
of distance-based similarity search. Provide these alternative
|
|
questions separated by newlines. Original question: {question}""",
|
|
)
|
|
|
|
|
|
def _unique_documents(documents: Sequence[Document]) -> List[Document]:
|
|
return [doc for i, doc in enumerate(documents) if doc not in documents[:i]][:4]
|
|
|
|
|
|
class MultiQueryRetriever(BaseRetriever):
|
|
"""Given a query, use an LLM to write a set of queries.
|
|
|
|
Retrieve docs for each query. Return the unique union of all retrieved docs.
|
|
"""
|
|
|
|
retriever: BaseRetriever
|
|
llm_chain: LLMChain
|
|
verbose: bool = True
|
|
parser_key: str = "lines"
|
|
"""DEPRECATED. parser_key is no longer used and should not be specified."""
|
|
include_original: bool = False
|
|
"""Whether to include the original query in the list of generated queries."""
|
|
|
|
@classmethod
|
|
def from_llm(
|
|
cls,
|
|
retriever: BaseRetriever,
|
|
llm: BaseLanguageModel,
|
|
prompt: PromptTemplate = DEFAULT_QUERY_PROMPT,
|
|
parser_key: Optional[str] = None,
|
|
include_original: bool = False,
|
|
) -> "MultiQueryRetriever":
|
|
"""Initialize from llm using default template.
|
|
|
|
Args:
|
|
retriever: retriever to query documents from
|
|
llm: llm for query generation using DEFAULT_QUERY_PROMPT
|
|
include_original: Whether to include the original query in the list of
|
|
generated queries.
|
|
|
|
Returns:
|
|
MultiQueryRetriever
|
|
"""
|
|
output_parser = LineListOutputParser()
|
|
llm_chain = LLMChain(llm=llm, prompt=prompt, output_parser=output_parser)
|
|
return cls(
|
|
retriever=retriever,
|
|
llm_chain=llm_chain,
|
|
include_original=include_original,
|
|
)
|
|
|
|
async def _aget_relevant_documents(
|
|
self,
|
|
query: str,
|
|
*,
|
|
run_manager: AsyncCallbackManagerForRetrieverRun,
|
|
) -> List[Document]:
|
|
"""Get relevant documents given a user query.
|
|
|
|
Args:
|
|
question: user query
|
|
|
|
Returns:
|
|
Unique union of relevant documents from all generated queries
|
|
"""
|
|
queries = await self.agenerate_queries(query, run_manager)
|
|
if self.include_original:
|
|
queries.append(query)
|
|
documents = await self.aretrieve_documents(queries, run_manager)
|
|
return self.unique_union(documents)
|
|
|
|
async def agenerate_queries(
|
|
self, question: str, run_manager: AsyncCallbackManagerForRetrieverRun
|
|
) -> List[str]:
|
|
"""Generate queries based upon user input.
|
|
|
|
Args:
|
|
question: user query
|
|
|
|
Returns:
|
|
List of LLM generated queries that are similar to the user input
|
|
"""
|
|
response = await self.llm_chain.acall(
|
|
inputs={"question": question}, callbacks=run_manager.get_child()
|
|
)
|
|
lines = response["text"]
|
|
if self.verbose:
|
|
logger.info(f"Generated queries: {lines}")
|
|
return lines
|
|
|
|
async def aretrieve_documents(
|
|
self, queries: List[str], run_manager: AsyncCallbackManagerForRetrieverRun
|
|
) -> List[Document]:
|
|
"""Run all LLM generated queries.
|
|
|
|
Args:
|
|
queries: query list
|
|
|
|
Returns:
|
|
List of retrieved Documents
|
|
"""
|
|
document_lists = await asyncio.gather(
|
|
*(
|
|
self.retriever.aget_relevant_documents(
|
|
query, callbacks=run_manager.get_child()
|
|
)
|
|
for query in queries
|
|
)
|
|
)
|
|
return [doc for docs in document_lists for doc in docs]
|
|
|
|
def _get_relevant_documents(
|
|
self,
|
|
query: str,
|
|
*,
|
|
run_manager: CallbackManagerForRetrieverRun,
|
|
) -> List[Document]:
|
|
"""Get relevant documents given a user query.
|
|
|
|
Args:
|
|
question: user query
|
|
|
|
Returns:
|
|
Unique union of relevant documents from all generated queries
|
|
"""
|
|
queries = self.generate_queries(query, run_manager)
|
|
if self.include_original:
|
|
queries.append(query)
|
|
documents = self.retrieve_documents(queries, run_manager)
|
|
return self.unique_union(documents)
|
|
|
|
def generate_queries(
|
|
self, question: str, run_manager: CallbackManagerForRetrieverRun
|
|
) -> List[str]:
|
|
"""Generate queries based upon user input.
|
|
|
|
Args:
|
|
question: user query
|
|
|
|
Returns:
|
|
List of LLM generated queries that are similar to the user input
|
|
"""
|
|
response = self.llm_chain(
|
|
{"question": question}, callbacks=run_manager.get_child()
|
|
)
|
|
lines = response["text"]
|
|
if self.verbose:
|
|
logger.info(f"Generated queries: {lines}")
|
|
return lines
|
|
|
|
def retrieve_documents(
|
|
self, queries: List[str], run_manager: CallbackManagerForRetrieverRun
|
|
) -> List[Document]:
|
|
"""Run all LLM generated queries.
|
|
|
|
Args:
|
|
queries: query list
|
|
|
|
Returns:
|
|
List of retrieved Documents
|
|
"""
|
|
documents = []
|
|
for query in queries:
|
|
docs = self.retriever.get_relevant_documents(
|
|
query, callbacks=run_manager.get_child()
|
|
)
|
|
documents.extend(docs)
|
|
print("retrieve documents--", len(documents))
|
|
return documents
|
|
|
|
def unique_union(self, documents: List[Document]) -> List[Document]:
|
|
"""Get unique Documents.
|
|
|
|
Args:
|
|
documents: List of retrieved Documents
|
|
|
|
Returns:
|
|
List of unique retrieved Documents
|
|
"""
|
|
print("unique union--", len(documents))
|
|
return _unique_documents(documents)
|
|
|