Spaces:
Runtime error
Runtime error
vaivskku
commited on
Commit
ยท
36bca9d
1
Parent(s):
f7411a0
app.py
Browse files
app.py
ADDED
@@ -0,0 +1,936 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoProcessor, Pix2StructForConditionalGeneration, T5Tokenizer, T5ForConditionalGeneration, Pix2StructProcessor
|
3 |
+
from PIL import Image
|
4 |
+
import torch
|
5 |
+
import warnings
|
6 |
+
import re
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
import numpy as np
|
10 |
+
import pandas as pd
|
11 |
+
from tqdm import tqdm
|
12 |
+
import argparse
|
13 |
+
from scipy import optimize
|
14 |
+
from typing import Optional
|
15 |
+
import dataclasses
|
16 |
+
import editdistance
|
17 |
+
import itertools
|
18 |
+
import sys
|
19 |
+
import time
|
20 |
+
import logging
|
21 |
+
|
22 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
23 |
+
logger = logging.getLogger()
|
24 |
+
|
25 |
+
warnings.filterwarnings('ignore')
|
26 |
+
MAX_PATCHES = 512
|
27 |
+
# Load the models and processor
|
28 |
+
#device = torch.device("cpu")
|
29 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
+
|
31 |
+
# Paths to the models
|
32 |
+
ko_deplot_model_path = './model_epoch_1_210000.bin'
|
33 |
+
aihub_deplot_model_path='./deplot_k.pt'
|
34 |
+
t5_model_path = './ke_t5.pt'
|
35 |
+
|
36 |
+
# Load first model ko-deplot
|
37 |
+
processor1 = Pix2StructProcessor.from_pretrained('nuua/ko-deplot')
|
38 |
+
model1 = Pix2StructForConditionalGeneration.from_pretrained('nuua/ko-deplot')
|
39 |
+
model1.load_state_dict(torch.load(ko_deplot_model_path, map_location=device))
|
40 |
+
model1.to(device)
|
41 |
+
|
42 |
+
# Load second model aihub-deplot
|
43 |
+
processor2 = AutoProcessor.from_pretrained("ybelkada/pix2struct-base")
|
44 |
+
model2 = Pix2StructForConditionalGeneration.from_pretrained("ybelkada/pix2struct-base")
|
45 |
+
model2.load_state_dict(torch.load(aihub_deplot_model_path, map_location=device))
|
46 |
+
|
47 |
+
|
48 |
+
tokenizer = T5Tokenizer.from_pretrained("KETI-AIR/ke-t5-base")
|
49 |
+
t5_model = T5ForConditionalGeneration.from_pretrained("KETI-AIR/ke-t5-base")
|
50 |
+
t5_model.load_state_dict(torch.load(t5_model_path, map_location=device))
|
51 |
+
|
52 |
+
model2.to(device)
|
53 |
+
t5_model.to(device)
|
54 |
+
|
55 |
+
|
56 |
+
#ko-deplot ์ถ๋ก ํจ์
|
57 |
+
# Function to format output
|
58 |
+
def format_output(prediction):
|
59 |
+
return prediction.replace('<0x0A>', '\n')
|
60 |
+
|
61 |
+
# First model prediction ko-deplot
|
62 |
+
def predict_model1(image):
|
63 |
+
images = [image]
|
64 |
+
inputs = processor1(images=images, text="What is the title of the chart", return_tensors="pt", padding=True)
|
65 |
+
inputs = {k: v.to(device) for k, v in inputs.items()} # Move to GPU
|
66 |
+
|
67 |
+
model1.eval()
|
68 |
+
with torch.no_grad():
|
69 |
+
predictions = model1.generate(**inputs, max_new_tokens=4096)
|
70 |
+
outputs = [processor1.decode(pred, skip_special_tokens=True) for pred in predictions]
|
71 |
+
|
72 |
+
formatted_output = format_output(outputs[0])
|
73 |
+
return formatted_output
|
74 |
+
|
75 |
+
|
76 |
+
def replace_unk(text):
|
77 |
+
# 1. '์ ๋ชฉ:', '์ ํ:' ๊ธ์ ์์ ์๋ <unk>๋ \n๋ก ๋ฐ๊ฟ
|
78 |
+
text = re.sub(r'<unk>(?=์ ๋ชฉ:|์ ํ:)', '\n', text)
|
79 |
+
# 2. '์ธ๋ก ' ๋๋ '๊ฐ๋ก '์ '๋ํ' ์ฌ์ด์ ์๋ <unk>๋ฅผ ""๋ก ๋ฐ๊ฟ
|
80 |
+
text = re.sub(r'(?<=์ธ๋ก |๊ฐ๋ก )<unk>(?=๋ํ)', '', text)
|
81 |
+
# 3. ์ซ์์ ํ
์คํธ ์ฌ์ด์ ์๋ <unk>๋ฅผ \n๋ก ๋ฐ๊ฟ
|
82 |
+
text = re.sub(r'(\d)<unk>([^\d])', r'\1\n\2', text)
|
83 |
+
# 4. %, ์, ๊ฑด, ๋ช
๋ค์ ๋์ค๋ <unk>๋ฅผ \n๋ก ๋ฐ๊ฟ
|
84 |
+
text = re.sub(r'(?<=[%์๊ฑด๋ช
\)])<unk>', '\n', text)
|
85 |
+
# 5. ์ซ์์ ์ซ์ ์ฌ์ด์ ์๋ <unk>๋ฅผ \n๋ก ๋ฐ๊ฟ
|
86 |
+
text = re.sub(r'(\d)<unk>(\d)', r'\1\n\2', text)
|
87 |
+
# 6. 'ํ'์ด๋ผ๋ ๊ธ์์ ' |' ์ฌ์ด์ ์๋ <unk>๋ฅผ \n๋ก ๋ฐ๊ฟ
|
88 |
+
text = re.sub(r'ํ<unk>(?= \|)', 'ํ\n', text)
|
89 |
+
# 7. ๋๋จธ์ง <unk>๋ฅผ ๋ชจ๋ ""๋ก ๋ฐ๊ฟ
|
90 |
+
text = text.replace('<unk>', '')
|
91 |
+
return text
|
92 |
+
|
93 |
+
# Second model prediction aihub_deplot
|
94 |
+
def predict_model2(image):
|
95 |
+
image = image.convert("RGB")
|
96 |
+
inputs = processor2(images=image, return_tensors="pt", max_patches=MAX_PATCHES).to(device)
|
97 |
+
|
98 |
+
flattened_patches = inputs.flattened_patches.to(device)
|
99 |
+
attention_mask = inputs.attention_mask.to(device)
|
100 |
+
|
101 |
+
model2.eval()
|
102 |
+
t5_model.eval()
|
103 |
+
with torch.no_grad():
|
104 |
+
deplot_generated_ids = model2.generate(flattened_patches=flattened_patches, attention_mask=attention_mask, max_length=1000)
|
105 |
+
generated_datatable = processor2.batch_decode(deplot_generated_ids, skip_special_tokens=False)[0]
|
106 |
+
generated_datatable = generated_datatable.replace("<pad>", "<unk>").replace("</s>", "<unk>")
|
107 |
+
refined_table = replace_unk(generated_datatable)
|
108 |
+
return refined_table
|
109 |
+
|
110 |
+
#function for converting aihub dataset labeling json file to ko-deplot data table
|
111 |
+
def process_json_file(input_file):
|
112 |
+
with open(input_file, 'r', encoding='utf-8') as file:
|
113 |
+
data = json.load(file)
|
114 |
+
|
115 |
+
# ํ์ํ ๋ฐ์ดํฐ ์ถ์ถ
|
116 |
+
chart_type = data['metadata']['chart_sub']
|
117 |
+
title = data['annotations'][0]['title']
|
118 |
+
x_axis = data['annotations'][0]['axis_label']['x_axis']
|
119 |
+
y_axis = data['annotations'][0]['axis_label']['y_axis']
|
120 |
+
legend = data['annotations'][0]['legend']
|
121 |
+
data_labels = data['annotations'][0]['data_label']
|
122 |
+
is_legend = data['annotations'][0]['is_legend']
|
123 |
+
|
124 |
+
# ์ํ๋ ํ์์ผ๋ก ๋ณํ
|
125 |
+
formatted_string = f"TITLE | {title} <0x0A> "
|
126 |
+
if '๊ฐ๋ก' in chart_type:
|
127 |
+
if is_legend:
|
128 |
+
# ๊ฐ๋ก ์ฐจํธ ์ฒ๋ฆฌ
|
129 |
+
formatted_string += " | ".join(legend) + " <0x0A> "
|
130 |
+
for i in range(len(y_axis)):
|
131 |
+
row = [y_axis[i]]
|
132 |
+
for j in range(len(legend)):
|
133 |
+
if i < len(data_labels[j]):
|
134 |
+
row.append(str(data_labels[j][i])) # ๋ฐ์ดํฐ ๊ฐ์ ๋ฌธ์์ด๋ก ๋ณํ
|
135 |
+
else:
|
136 |
+
row.append("") # ๋ฐ์ดํฐ๊ฐ ์๋ ๊ฒฝ์ฐ ๋น ๋ฌธ์์ด ์ถ๊ฐ
|
137 |
+
formatted_string += " | ".join(row) + " <0x0A> "
|
138 |
+
else:
|
139 |
+
# is_legend๊ฐ False์ธ ๊ฒฝ์ฐ
|
140 |
+
for i in range(len(y_axis)):
|
141 |
+
row = [y_axis[i], str(data_labels[0][i])]
|
142 |
+
formatted_string += " | ".join(row) + " <0x0A> "
|
143 |
+
elif chart_type == "์ํ":
|
144 |
+
# ์ํ ์ฐจํธ ์ฒ๋ฆฌ
|
145 |
+
if legend:
|
146 |
+
used_labels = legend
|
147 |
+
else:
|
148 |
+
used_labels = x_axis
|
149 |
+
|
150 |
+
formatted_string += " | ".join(used_labels) + " <0x0A> "
|
151 |
+
row = [data_labels[0][i] for i in range(len(used_labels))]
|
152 |
+
formatted_string += " | ".join(row) + " <0x0A> "
|
153 |
+
elif chart_type == "ํผํฉํ":
|
154 |
+
# ํผํฉํ ์ฐจํธ ์ฒ๋ฆฌ
|
155 |
+
all_legends = [ann['legend'][0] for ann in data['annotations']]
|
156 |
+
formatted_string += " | ".join(all_legends) + " <0x0A> "
|
157 |
+
|
158 |
+
combined_data = []
|
159 |
+
for i in range(len(x_axis)):
|
160 |
+
row = [x_axis[i]]
|
161 |
+
for ann in data['annotations']:
|
162 |
+
if i < len(ann['data_label'][0]):
|
163 |
+
row.append(str(ann['data_label'][0][i])) # ๋ฐ์ดํฐ ๊ฐ์ ๋ฌธ์์ด๋ก ๋ณํ
|
164 |
+
else:
|
165 |
+
row.append("") # ๋ฐ์ดํฐ๊ฐ ์๋ ๊ฒฝ์ฐ ๋น ๋ฌธ์์ด ์ถ๊ฐ
|
166 |
+
combined_data.append(" | ".join(row))
|
167 |
+
|
168 |
+
formatted_string += " <0x0A> ".join(combined_data) + " <0x0A> "
|
169 |
+
else:
|
170 |
+
# ๊ธฐํ ์ฐจํธ ์ฒ๋ฆฌ
|
171 |
+
if is_legend:
|
172 |
+
formatted_string += " | ".join(legend) + " <0x0A> "
|
173 |
+
for i in range(len(x_axis)):
|
174 |
+
row = [x_axis[i]]
|
175 |
+
for j in range(len(legend)):
|
176 |
+
if i < len(data_labels[j]):
|
177 |
+
row.append(str(data_labels[j][i])) # ๋ฐ์ดํฐ ๊ฐ์ ๋ฌธ์์ด๋ก ๋ณํ
|
178 |
+
else:
|
179 |
+
row.append("") # ๋ฐ์ดํฐ๊ฐ ์๋ ๊ฒฝ์ฐ ๋น ๋ฌธ์์ด ์ถ๊ฐ
|
180 |
+
formatted_string += " | ".join(row) + " <0x0A> "
|
181 |
+
else:
|
182 |
+
for i in range(len(x_axis)):
|
183 |
+
if i < len(data_labels[0]):
|
184 |
+
formatted_string += f"{x_axis[i]} | {str(data_labels[0][i])} <0x0A> "
|
185 |
+
else:
|
186 |
+
formatted_string += f"{x_axis[i]} | <0x0A> " # ๋ฐ์ดํฐ๊ฐ ์๋ ๊ฒฝ์ฐ ๋น ๋ฌธ์์ด ์ถ๊ฐ
|
187 |
+
|
188 |
+
# ๋ง์ง๋ง "<0x0A> " ์ ๊ฑฐ
|
189 |
+
formatted_string = formatted_string[:-8]
|
190 |
+
return format_output(formatted_string)
|
191 |
+
|
192 |
+
def chart_data(data):
|
193 |
+
datatable = []
|
194 |
+
num = len(data)
|
195 |
+
for n in range(num):
|
196 |
+
title = data[n]['title'] if data[n]['is_title'] else ''
|
197 |
+
legend = data[n]['legend'] if data[n]['is_legend'] else ''
|
198 |
+
datalabel = data[n]['data_label'] if data[n]['is_datalabel'] else [0]
|
199 |
+
unit = data[n]['unit'] if data[n]['is_unit'] else ''
|
200 |
+
base = data[n]['base'] if data[n]['is_base'] else ''
|
201 |
+
x_axis_title = data[n]['axis_title']['x_axis']
|
202 |
+
y_axis_title = data[n]['axis_title']['y_axis']
|
203 |
+
x_axis = data[n]['axis_label']['x_axis'] if data[n]['is_axis_label_x_axis'] else [0]
|
204 |
+
y_axis = data[n]['axis_label']['y_axis'] if data[n]['is_axis_label_y_axis'] else [0]
|
205 |
+
|
206 |
+
if len(legend) > 1:
|
207 |
+
datalabel = np.array(datalabel).transpose().tolist()
|
208 |
+
|
209 |
+
datatable.append([title, legend, datalabel, unit, base, x_axis_title, y_axis_title, x_axis, y_axis])
|
210 |
+
|
211 |
+
return datatable
|
212 |
+
|
213 |
+
def datatable(data, chart_type):
|
214 |
+
data_table = ''
|
215 |
+
num = len(data)
|
216 |
+
|
217 |
+
if len(data) == 2:
|
218 |
+
temp = []
|
219 |
+
temp.append(f"๋์: {data[0][4]}")
|
220 |
+
temp.append(f"์ ๋ชฉ: {data[0][0]}")
|
221 |
+
temp.append(f"์ ํ: {' '.join(chart_type[0:2])}")
|
222 |
+
temp.append(f"{data[0][5]} | {data[0][1][0]}({data[0][3]}) | {data[1][1][0]}({data[1][3]})")
|
223 |
+
|
224 |
+
x_axis = data[0][7]
|
225 |
+
for idx, x in enumerate(x_axis):
|
226 |
+
temp.append(f"{x} | {data[0][2][0][idx]} | {data[1][2][0][idx]}")
|
227 |
+
|
228 |
+
data_table = '\n'.join(temp)
|
229 |
+
else:
|
230 |
+
for n in range(num):
|
231 |
+
temp = []
|
232 |
+
|
233 |
+
title, legend, datalabel, unit, base, x_axis_title, y_axis_title, x_axis, y_axis = data[n]
|
234 |
+
legend = [element + f"({unit})" for element in legend]
|
235 |
+
|
236 |
+
if len(legend) > 1:
|
237 |
+
temp.append(f"๋์: {base}")
|
238 |
+
temp.append(f"์ ๋ชฉ: {title}")
|
239 |
+
temp.append(f"์ ํ: {' '.join(chart_type[0:2])}")
|
240 |
+
temp.append(f"{x_axis_title} | {' | '.join(legend)}")
|
241 |
+
|
242 |
+
if chart_type[2] == "์ํ":
|
243 |
+
datalabel = sum(datalabel, [])
|
244 |
+
temp.append(f"{' | '.join([str(d) for d in datalabel])}")
|
245 |
+
data_table = '\n'.join(temp)
|
246 |
+
else:
|
247 |
+
axis = y_axis if chart_type[2] == "๊ฐ๋ก ๋ง๋ํ" else x_axis
|
248 |
+
for idx, (x, d) in enumerate(zip(axis, datalabel)):
|
249 |
+
temp_d = [str(e) for e in d]
|
250 |
+
temp_d = " | ".join(temp_d)
|
251 |
+
row = f"{x} | {temp_d}"
|
252 |
+
temp.append(row)
|
253 |
+
data_table = '\n'.join(temp)
|
254 |
+
else:
|
255 |
+
temp.append(f"๋์: {base}")
|
256 |
+
temp.append(f"์ ๋ชฉ: {title}")
|
257 |
+
temp.append(f"์ ํ: {' '.join(chart_type[0:2])}")
|
258 |
+
temp.append(f"{x_axis_title} | {unit}")
|
259 |
+
axis = y_axis if chart_type[2] == "๊ฐ๋ก ๋ง๋ํ" else x_axis
|
260 |
+
datalabel = datalabel[0]
|
261 |
+
|
262 |
+
for idx, x in enumerate(axis):
|
263 |
+
row = f"{x} | {str(datalabel[idx])}"
|
264 |
+
temp.append(row)
|
265 |
+
data_table = '\n'.join(temp)
|
266 |
+
|
267 |
+
return data_table
|
268 |
+
|
269 |
+
#function for converting aihub dataset labeling json file to aihub-deplot data table
|
270 |
+
def process_json_file2(input_file):
|
271 |
+
with open(input_file, 'r', encoding='utf-8') as file:
|
272 |
+
data = json.load(file)
|
273 |
+
# ํ์ํ ๋ฐ์ดํฐ ์ถ์ถ
|
274 |
+
chart_multi = data['metadata']['chart_multi']
|
275 |
+
chart_main = data['metadata']['chart_main']
|
276 |
+
chart_sub = data['metadata']['chart_sub']
|
277 |
+
chart_type = [chart_multi, chart_sub, chart_main]
|
278 |
+
chart_annotations = data['annotations']
|
279 |
+
|
280 |
+
charData = chart_data(chart_annotations)
|
281 |
+
dataTable = datatable(charData, chart_type)
|
282 |
+
return dataTable
|
283 |
+
|
284 |
+
# RMS
|
285 |
+
def _to_float(text): # ๋จ์ ๋ผ๊ณ ์ซ์๋ง..?
|
286 |
+
try:
|
287 |
+
if text.endswith("%"):
|
288 |
+
# Convert percentages to floats.
|
289 |
+
return float(text.rstrip("%")) / 100.0
|
290 |
+
else:
|
291 |
+
return float(text)
|
292 |
+
except ValueError:
|
293 |
+
return None
|
294 |
+
|
295 |
+
|
296 |
+
def _get_relative_distance(
|
297 |
+
target, prediction, theta = 1.0
|
298 |
+
):
|
299 |
+
"""Returns min(1, |target-prediction|/|target|)."""
|
300 |
+
if not target:
|
301 |
+
return int(not prediction)
|
302 |
+
distance = min(abs((target - prediction) / target), 1)
|
303 |
+
return distance if distance < theta else 1
|
304 |
+
|
305 |
+
def anls_metric(target: str, prediction: str, theta: float = 0.5):
|
306 |
+
edit_distance = editdistance.eval(target, prediction)
|
307 |
+
normalize_ld = edit_distance / max(len(target), len(prediction))
|
308 |
+
return 1 - normalize_ld if normalize_ld < theta else 0
|
309 |
+
|
310 |
+
def _permute(values, indexes):
|
311 |
+
return tuple(values[i] if i < len(values) else "" for i in indexes)
|
312 |
+
|
313 |
+
|
314 |
+
@dataclasses.dataclass(frozen=True)
|
315 |
+
class Table:
|
316 |
+
"""Helper class for the content of a markdown table."""
|
317 |
+
|
318 |
+
base: Optional[str] = None
|
319 |
+
title: Optional[str] = None
|
320 |
+
chartType: Optional[str] = None
|
321 |
+
headers: tuple[str, Ellipsis] = dataclasses.field(default_factory=tuple)
|
322 |
+
rows: tuple[tuple[str, Ellipsis], Ellipsis] = dataclasses.field(default_factory=tuple)
|
323 |
+
|
324 |
+
def permuted(self, indexes):
|
325 |
+
"""Builds a version of the table changing the column order."""
|
326 |
+
return Table(
|
327 |
+
base=self.base,
|
328 |
+
title=self.title,
|
329 |
+
chartType=self.chartType,
|
330 |
+
headers=_permute(self.headers, indexes),
|
331 |
+
rows=tuple(_permute(row, indexes) for row in self.rows),
|
332 |
+
)
|
333 |
+
|
334 |
+
def aligned(
|
335 |
+
self, headers, text_theta = 0.5
|
336 |
+
):
|
337 |
+
"""Builds a column permutation with headers in the most correct order."""
|
338 |
+
if len(headers) != len(self.headers):
|
339 |
+
raise ValueError(f"Header length {headers} must match {self.headers}.")
|
340 |
+
distance = []
|
341 |
+
for h2 in self.headers:
|
342 |
+
distance.append(
|
343 |
+
[
|
344 |
+
1 - anls_metric(h1, h2, text_theta)
|
345 |
+
for h1 in headers
|
346 |
+
]
|
347 |
+
)
|
348 |
+
cost_matrix = np.array(distance)
|
349 |
+
row_ind, col_ind = optimize.linear_sum_assignment(cost_matrix)
|
350 |
+
permutation = [idx for _, idx in sorted(zip(col_ind, row_ind))]
|
351 |
+
score = (1 - cost_matrix)[permutation[1:], range(1, len(row_ind))].prod()
|
352 |
+
return self.permuted(permutation), score
|
353 |
+
|
354 |
+
def _parse_table(text, transposed = False): # ํ ์ ๋ชฉ, ์ด ์ด๋ฆ, ํ ์ฐพ๊ธฐ
|
355 |
+
"""Builds a table from a markdown representation."""
|
356 |
+
lines = text.lower().splitlines()
|
357 |
+
if not lines:
|
358 |
+
return Table()
|
359 |
+
|
360 |
+
if lines[0].startswith("๋์: "):
|
361 |
+
base = lines[0][len("๋์: ") :].strip()
|
362 |
+
offset = 1 #
|
363 |
+
else:
|
364 |
+
base = None
|
365 |
+
offset = 0
|
366 |
+
if lines[1].startswith("์ ๋ชฉ: "):
|
367 |
+
title = lines[1][len("์ ๋ชฉ: ") :].strip()
|
368 |
+
offset = 2 #
|
369 |
+
else:
|
370 |
+
title = None
|
371 |
+
offset = 1
|
372 |
+
if lines[2].startswith("์ ํ: "):
|
373 |
+
chartType = lines[2][len("์ ํ: ") :].strip()
|
374 |
+
offset = 3 #
|
375 |
+
else:
|
376 |
+
chartType = None
|
377 |
+
|
378 |
+
if len(lines) < offset + 1:
|
379 |
+
return Table(base=base, title=title, chartType=chartType)
|
380 |
+
|
381 |
+
rows = []
|
382 |
+
for line in lines[offset:]:
|
383 |
+
rows.append(tuple(v.strip() for v in line.split(" | ")))
|
384 |
+
if transposed:
|
385 |
+
rows = [tuple(row) for row in itertools.zip_longest(*rows, fillvalue="")]
|
386 |
+
return Table(base=base, title=title, chartType=chartType, headers=rows[0], rows=tuple(rows[1:]))
|
387 |
+
|
388 |
+
def _get_table_datapoints(table):
|
389 |
+
datapoints = {}
|
390 |
+
if table.base is not None:
|
391 |
+
datapoints["๋์"] = table.base
|
392 |
+
if table.title is not None:
|
393 |
+
datapoints["์ ๋ชฉ"] = table.title
|
394 |
+
if table.chartType is not None:
|
395 |
+
datapoints["์ ํ"] = table.chartType
|
396 |
+
if not table.rows or len(table.headers) <= 1:
|
397 |
+
return datapoints
|
398 |
+
for row in table.rows:
|
399 |
+
for header, cell in zip(table.headers[1:], row[1:]):
|
400 |
+
#print(f"{row[0]} {header} >> {cell}")
|
401 |
+
datapoints[f"{row[0]} {header}"] = cell #
|
402 |
+
return datapoints
|
403 |
+
|
404 |
+
def _get_datapoint_metric( #
|
405 |
+
target,
|
406 |
+
prediction,
|
407 |
+
text_theta=0.5,
|
408 |
+
number_theta=0.1,
|
409 |
+
):
|
410 |
+
"""Computes a metric that scores how similar two datapoint pairs are."""
|
411 |
+
key_metric = anls_metric(
|
412 |
+
target[0], prediction[0], text_theta
|
413 |
+
)
|
414 |
+
pred_float = _to_float(prediction[1]) # ์ซ์์ธ์ง ํ์ธ
|
415 |
+
target_float = _to_float(target[1])
|
416 |
+
if pred_float is not None and target_float:
|
417 |
+
return key_metric * (
|
418 |
+
1 - _get_relative_distance(target_float, pred_float, number_theta) # ์ซ์๋ฉด ์๋์ ๊ฑฐ๋ฆฌ๊ฐ ๊ณ์ฐ
|
419 |
+
)
|
420 |
+
elif target[1] == prediction[1]:
|
421 |
+
return key_metric
|
422 |
+
else:
|
423 |
+
return key_metric * anls_metric(
|
424 |
+
target[1], prediction[1], text_theta
|
425 |
+
)
|
426 |
+
|
427 |
+
def _table_datapoints_precision_recall_f1( # ์ฐ ๊ณ์ฐ
|
428 |
+
target_table,
|
429 |
+
prediction_table,
|
430 |
+
text_theta = 0.5,
|
431 |
+
number_theta = 0.1,
|
432 |
+
):
|
433 |
+
"""Calculates matching similarity between two tables as dicts."""
|
434 |
+
target_datapoints = list(_get_table_datapoints(target_table).items())
|
435 |
+
prediction_datapoints = list(_get_table_datapoints(prediction_table).items())
|
436 |
+
if not target_datapoints and not prediction_datapoints:
|
437 |
+
return 1, 1, 1
|
438 |
+
if not target_datapoints:
|
439 |
+
return 0, 1, 0
|
440 |
+
if not prediction_datapoints:
|
441 |
+
return 1, 0, 0
|
442 |
+
distance = []
|
443 |
+
for t, _ in target_datapoints:
|
444 |
+
distance.append(
|
445 |
+
[
|
446 |
+
1 - anls_metric(t, p, text_theta)
|
447 |
+
for p, _ in prediction_datapoints
|
448 |
+
]
|
449 |
+
)
|
450 |
+
cost_matrix = np.array(distance)
|
451 |
+
row_ind, col_ind = optimize.linear_sum_assignment(cost_matrix)
|
452 |
+
score = 0
|
453 |
+
for r, c in zip(row_ind, col_ind):
|
454 |
+
score += _get_datapoint_metric(
|
455 |
+
target_datapoints[r], prediction_datapoints[c], text_theta, number_theta
|
456 |
+
)
|
457 |
+
if score == 0:
|
458 |
+
return 0, 0, 0
|
459 |
+
precision = score / len(prediction_datapoints)
|
460 |
+
recall = score / len(target_datapoints)
|
461 |
+
return precision, recall, 2 * precision * recall / (precision + recall)
|
462 |
+
|
463 |
+
def table_datapoints_precision_recall_per_point( # ๊ฐ๊ฐ ๊ณ์ฐ...
|
464 |
+
targets,
|
465 |
+
predictions,
|
466 |
+
text_theta = 0.5,
|
467 |
+
number_theta = 0.1,
|
468 |
+
):
|
469 |
+
"""Computes precisin recall and F1 metrics given two flattened tables.
|
470 |
+
|
471 |
+
Parses each string into a dictionary of keys and values using row and column
|
472 |
+
headers. Then we match keys between the two dicts as long as their relative
|
473 |
+
levenshtein distance is below a threshold. Values are also compared with
|
474 |
+
ANLS if strings or relative distance if they are numeric.
|
475 |
+
|
476 |
+
Args:
|
477 |
+
targets: list of list of strings.
|
478 |
+
predictions: list of strings.
|
479 |
+
text_theta: relative edit distance above this is set to the maximum of 1.
|
480 |
+
number_theta: relative error rate above this is set to the maximum of 1.
|
481 |
+
|
482 |
+
Returns:
|
483 |
+
Dictionary with per-point precision, recall and F1
|
484 |
+
"""
|
485 |
+
assert len(targets) == len(predictions)
|
486 |
+
per_point_scores = {"precision": [], "recall": [], "f1": []}
|
487 |
+
for pred, target in zip(predictions, targets):
|
488 |
+
all_metrics = []
|
489 |
+
for transposed in [True, False]:
|
490 |
+
pred_table = _parse_table(pred, transposed=transposed)
|
491 |
+
target_table = _parse_table(target, transposed=transposed)
|
492 |
+
|
493 |
+
all_metrics.extend([_table_datapoints_precision_recall_f1(target_table, pred_table, text_theta, number_theta)])
|
494 |
+
|
495 |
+
p, r, f = max(all_metrics, key=lambda x: x[-1])
|
496 |
+
per_point_scores["precision"].append(p)
|
497 |
+
per_point_scores["recall"].append(r)
|
498 |
+
per_point_scores["f1"].append(f)
|
499 |
+
return per_point_scores
|
500 |
+
|
501 |
+
def table_datapoints_precision_recall( # deplot ์ฑ๋ฅ์งํ
|
502 |
+
targets,
|
503 |
+
predictions,
|
504 |
+
text_theta = 0.5,
|
505 |
+
number_theta = 0.1,
|
506 |
+
):
|
507 |
+
"""Aggregated version of table_datapoints_precision_recall_per_point().
|
508 |
+
|
509 |
+
Same as table_datapoints_precision_recall_per_point() but returning aggregated
|
510 |
+
scores instead of per-point scores.
|
511 |
+
|
512 |
+
Args:
|
513 |
+
targets: list of list of strings.
|
514 |
+
predictions: list of strings.
|
515 |
+
text_theta: relative edit distance above this is set to the maximum of 1.
|
516 |
+
number_theta: relative error rate above this is set to the maximum of 1.
|
517 |
+
|
518 |
+
Returns:
|
519 |
+
Dictionary with aggregated precision, recall and F1
|
520 |
+
"""
|
521 |
+
score_dict = table_datapoints_precision_recall_per_point(
|
522 |
+
targets, predictions, text_theta, number_theta
|
523 |
+
)
|
524 |
+
return {
|
525 |
+
"table_datapoints_precision": (
|
526 |
+
sum(score_dict["precision"]) / len(targets)
|
527 |
+
),
|
528 |
+
"table_datapoints_recall": (
|
529 |
+
sum(score_dict["recall"]) / len(targets)
|
530 |
+
),
|
531 |
+
"table_datapoints_f1": sum(score_dict["f1"]) / len(targets),
|
532 |
+
}
|
533 |
+
|
534 |
+
def evaluate_rms(generated_table,label_table):
|
535 |
+
predictions=[generated_table]
|
536 |
+
targets=[label_table]
|
537 |
+
RMS = table_datapoints_precision_recall(targets, predictions)
|
538 |
+
return RMS
|
539 |
+
|
540 |
+
def is_float(s):
|
541 |
+
try:
|
542 |
+
float(s)
|
543 |
+
return True
|
544 |
+
except ValueError:
|
545 |
+
return False
|
546 |
+
|
547 |
+
def ko_deplot_convert_to_dataframe(table_str):
|
548 |
+
lines = table_str.strip().split("\n")
|
549 |
+
title=lines[0].split(" | ")[1]
|
550 |
+
if(len(lines[1].split(" | "))==len(lines[2].split(" | "))):
|
551 |
+
headers=["0","1"]
|
552 |
+
if(is_float(lines[1].split(" | ")[1]) or lines[1].split(" | ")[0]==""):
|
553 |
+
data=[line.split(" | ") for line in lines[1:]]
|
554 |
+
df=pd.DataFrame(data,columns=headers)
|
555 |
+
return df
|
556 |
+
else:
|
557 |
+
category=lines[1].split(" | ")
|
558 |
+
value=lines[2].split(" | ")
|
559 |
+
df=pd.DataFrame({"๋ฒ๋ก":category,"๊ฐ":value})
|
560 |
+
return df
|
561 |
+
else:
|
562 |
+
headers=[]
|
563 |
+
data=[]
|
564 |
+
for i in range(len(lines[2].split(" | "))):
|
565 |
+
headers.append(f"{i}")
|
566 |
+
line1=lines[1].split(" | ")
|
567 |
+
line1.insert(0," ")
|
568 |
+
data.append(line1)
|
569 |
+
for line in lines[2:]:
|
570 |
+
data.append(line.split(" | "))
|
571 |
+
df = pd.DataFrame(data, columns=headers)
|
572 |
+
return df
|
573 |
+
|
574 |
+
def aihub_deplot_convert_to_dataframe(table_str):
|
575 |
+
lines = table_str.strip().split("\n")
|
576 |
+
headers = []
|
577 |
+
if(len(lines[3].split(" | "))>len(lines[4].split(" | "))):
|
578 |
+
category=lines[3].split(" | ")
|
579 |
+
del category[0]
|
580 |
+
value=lines[4].split(" | ")
|
581 |
+
df=pd.DataFrame({"๋ฒ๋ก":category,"๊ฐ":value})
|
582 |
+
return df
|
583 |
+
else:
|
584 |
+
for i in range(len(lines[3].split(" | "))):
|
585 |
+
headers.append(f"{i}")
|
586 |
+
data = [line.split(" | ") for line in lines[3:]]
|
587 |
+
df = pd.DataFrame(data, columns=headers)
|
588 |
+
return df
|
589 |
+
|
590 |
+
class Highlighter:
|
591 |
+
def __init__(self):
|
592 |
+
self.row = 0
|
593 |
+
self.col = 0
|
594 |
+
|
595 |
+
def compare_and_highlight(self, pred_table_elem, target_table, pred_table_row, props=''):
|
596 |
+
if self.row >= pred_table_row:
|
597 |
+
self.col += 1
|
598 |
+
self.row = 0
|
599 |
+
if pred_table_elem != target_table.iloc[self.row, self.col]:
|
600 |
+
self.row += 1
|
601 |
+
return props
|
602 |
+
else:
|
603 |
+
self.row += 1
|
604 |
+
return None
|
605 |
+
|
606 |
+
# 1. ๋ฐ์ดํฐ ๋ก๋
|
607 |
+
aihub_deplot_result_df = pd.read_csv('./aihub_deplot_result.csv')
|
608 |
+
ko_deplot_result= './ko_deplot_result.json'
|
609 |
+
|
610 |
+
# 2. ์ฒดํฌํด์ผ ํ๋ ์ด๋ฏธ์ง ํ์ผ ๋ก๋
|
611 |
+
def load_image_checklist(file):
|
612 |
+
with open(file, 'r') as f:
|
613 |
+
#image_names = [f'"{line.strip()}"' for line in f]
|
614 |
+
image_names = f.read().splitlines()
|
615 |
+
return image_names
|
616 |
+
|
617 |
+
# 3. ํ์ฌ ์ธ๋ฑ์ค๋ฅผ ์ถ์ ํ๊ธฐ ์ํ ๋ณ์
|
618 |
+
current_index = 0
|
619 |
+
image_names = []
|
620 |
+
def show_image(current_idx):
|
621 |
+
image_name=image_names[current_idx]
|
622 |
+
image_path = f"./images/{image_name}.jpg"
|
623 |
+
if not os.path.exists(image_path):
|
624 |
+
raise FileNotFoundError(f"Image file not found: {image_path}")
|
625 |
+
return Image.open(image_path)
|
626 |
+
|
627 |
+
# 4. ๋ฒํผ ํด๋ฆญ ์ด๋ฒคํธ ํธ๋ค๋ฌ
|
628 |
+
def non_real_time_check(file):
|
629 |
+
highlighter1 = Highlighter()
|
630 |
+
highlighter2 = Highlighter()
|
631 |
+
#global image_names, current_index
|
632 |
+
#image_names = load_image_checklist(file)
|
633 |
+
#current_index = 0
|
634 |
+
#image=show_image(current_index)
|
635 |
+
file_name =image_names[current_index].replace("Source","Label")
|
636 |
+
|
637 |
+
json_path="./ko_deplot_labeling_data.json"
|
638 |
+
with open(json_path, 'r', encoding='utf-8') as file:
|
639 |
+
json_data = json.load(file)
|
640 |
+
for key, value in json_data.items():
|
641 |
+
if key == file_name:
|
642 |
+
ko_deplot_labeling_str=value.get("txt").replace("<0x0A>","\n")
|
643 |
+
ko_deplot_label_title=ko_deplot_labeling_str.split(" \n ")[0].replace("TITLE | ","์ ๋ชฉ:")
|
644 |
+
break
|
645 |
+
|
646 |
+
ko_deplot_rms_path="./ko_deplot_rms.txt"
|
647 |
+
|
648 |
+
with open(ko_deplot_rms_path,'r',encoding='utf-8') as file:
|
649 |
+
lines=file.readlines()
|
650 |
+
flag=0
|
651 |
+
for line in lines:
|
652 |
+
parts=line.strip().split(", ")
|
653 |
+
if(len(parts)==2 and parts[0]==image_names[current_index]):
|
654 |
+
ko_deplot_rms=parts[1]
|
655 |
+
flag=1
|
656 |
+
break
|
657 |
+
if(flag==0):
|
658 |
+
ko_deplot_rms="none"
|
659 |
+
ko_deplot_generated_title,ko_deplot_generated_table=ko_deplot_display_results(current_index)
|
660 |
+
aihub_deplot_generated_table,aihub_deplot_label_table,aihub_deplot_generated_title,aihub_deplot_label_title=aihub_deplot_display_results(current_index)
|
661 |
+
#ko_deplot_RMS=evaluate_rms(ko_deplot_generated_table,ko_deplot_labeling_str)
|
662 |
+
aihub_deplot_RMS=evaluate_rms(aihub_deplot_generated_table,aihub_deplot_label_table)
|
663 |
+
|
664 |
+
|
665 |
+
if flag == 1:
|
666 |
+
value = [round(float(ko_deplot_rms), 1)]
|
667 |
+
else:
|
668 |
+
value = [0]
|
669 |
+
|
670 |
+
ko_deplot_score_table = pd.DataFrame({
|
671 |
+
'category': ['f1'],
|
672 |
+
'value': value
|
673 |
+
})
|
674 |
+
|
675 |
+
aihub_deplot_score_table=pd.DataFrame({
|
676 |
+
'category': ['precision', 'recall', 'f1'],
|
677 |
+
'value': [
|
678 |
+
round(aihub_deplot_RMS['table_datapoints_precision'],1),
|
679 |
+
round(aihub_deplot_RMS['table_datapoints_recall'],1),
|
680 |
+
round(aihub_deplot_RMS['table_datapoints_f1'],1)
|
681 |
+
]
|
682 |
+
})
|
683 |
+
ko_deplot_generated_df=ko_deplot_convert_to_dataframe(ko_deplot_generated_table)
|
684 |
+
aihub_deplot_generated_df=aihub_deplot_convert_to_dataframe(aihub_deplot_generated_table)
|
685 |
+
ko_deplot_labeling_df=ko_deplot_convert_to_dataframe(ko_deplot_labeling_str)
|
686 |
+
aihub_deplot_labeling_df=aihub_deplot_convert_to_dataframe(aihub_deplot_label_table)
|
687 |
+
|
688 |
+
ko_deplot_generated_df_row=ko_deplot_generated_df.shape[0]
|
689 |
+
aihub_deplot_generated_df_row=aihub_deplot_generated_df.shape[0]
|
690 |
+
|
691 |
+
|
692 |
+
styled_ko_deplot_table=ko_deplot_generated_df.style.applymap(highlighter1.compare_and_highlight,target_table=ko_deplot_labeling_df,pred_table_row=ko_deplot_generated_df_row,props='color:red')
|
693 |
+
|
694 |
+
|
695 |
+
styled_aihub_deplot_table=aihub_deplot_generated_df.style.applymap(highlighter2.compare_and_highlight,target_table=aihub_deplot_labeling_df,pred_table_row=aihub_deplot_generated_df_row,props='color:red')
|
696 |
+
|
697 |
+
#return ko_deplot_convert_to_dataframe(ko_deplot_generated_table), aihub_deplot_convert_to_dataframe(aihub_deplot_generated_table), aihub_deplot_convert_to_dataframe(label_table), ko_deplot_score_table, aihub_deplot_score_table
|
698 |
+
return gr.DataFrame(styled_ko_deplot_table,label=ko_deplot_generated_title+"(ko deplot ์ถ๋ก ๊ฒฐ๊ณผ)"),gr.DataFrame(styled_aihub_deplot_table,label=aihub_deplot_generated_title+"(aihub deplot ์ถ๋ก ๊ฒฐ๊ณผ)"),gr.DataFrame(ko_deplot_labeling_df,label=ko_deplot_label_title+"(ko deplot ์ ๋ต ํ
์ด๋ธ)"), gr.DataFrame(aihub_deplot_labeling_df,label=aihub_deplot_label_title+"(aihub deplot ์ ๋ต ํ
์ด๋ธ)"),ko_deplot_score_table, aihub_deplot_score_table
|
699 |
+
|
700 |
+
def ko_deplot_display_results(index):
|
701 |
+
filename=image_names[index]+".jpg"
|
702 |
+
with open(ko_deplot_result, 'r', encoding='utf-8') as f:
|
703 |
+
data = json.load(f)
|
704 |
+
for entry in data:
|
705 |
+
if entry['filename'].endswith(filename):
|
706 |
+
#return entry['table']
|
707 |
+
parts=entry['table'].split(" \n ",1)
|
708 |
+
return parts[0].replace("TITLE | ","์ ๋ชฉ:"),entry['table']
|
709 |
+
|
710 |
+
def aihub_deplot_display_results(index):
|
711 |
+
if index < 0 or index >= len(image_names):
|
712 |
+
return "Index out of range", None, None
|
713 |
+
image_name = image_names[index]
|
714 |
+
image_row = aihub_deplot_result_df[aihub_deplot_result_df['data_id'] == image_name]
|
715 |
+
if not image_row.empty:
|
716 |
+
generated_table = image_row['generated_table'].values[0]
|
717 |
+
generated_title=generated_table.split("\n")[1]
|
718 |
+
label_table = image_row['label_table'].values[0]
|
719 |
+
label_title=label_table.split("\n")[1]
|
720 |
+
return generated_table, label_table, generated_title, label_title
|
721 |
+
else:
|
722 |
+
return "No results found for the image", None, None
|
723 |
+
|
724 |
+
def previous_image():
|
725 |
+
global current_index
|
726 |
+
if current_index>0:
|
727 |
+
current_index-=1
|
728 |
+
image=show_image(current_index)
|
729 |
+
return image, image_names[current_index],gr.update(interactive=current_index>0), gr.update(interactive=current_index<len(image_names)-1)
|
730 |
+
|
731 |
+
def next_image():
|
732 |
+
global current_index
|
733 |
+
if current_index<len(image_names)-1:
|
734 |
+
current_index+=1
|
735 |
+
image=show_image(current_index)
|
736 |
+
return image, image_names[current_index],gr.update(interactive=current_index>0), gr.update(interactive=current_index<len(image_names)-1)
|
737 |
+
|
738 |
+
def real_time_check(image_file):
|
739 |
+
highlighter1 = Highlighter()
|
740 |
+
highlighter2 = Highlighter()
|
741 |
+
image = Image.open(image_file)
|
742 |
+
result_model1 = predict_model1(image)
|
743 |
+
ko_deplot_generated_title=result_model1.split("\n")[0].split(" | ")[1]
|
744 |
+
ko_deplot_table=ko_deplot_convert_to_dataframe(result_model1)
|
745 |
+
|
746 |
+
result_model2 = predict_model2(image)
|
747 |
+
aihub_deplot_generated_title=result_model2.split("\n")[1].split(":")[1]
|
748 |
+
aihub_deplot_table=aihub_deplot_convert_to_dataframe(result_model2)
|
749 |
+
image_base_name = os.path.basename(image_file.name).replace("Source","Label")
|
750 |
+
file_name, _ = os.path.splitext(image_base_name)
|
751 |
+
aihub_labeling_data_json="./labeling_data/"+file_name+".json"
|
752 |
+
#aihub_labeling_data_json="./labeling_data/line_graph.json"
|
753 |
+
ko_deplot_labeling_str=process_json_file(aihub_labeling_data_json)
|
754 |
+
ko_deplot_label_title=ko_deplot_labeling_str.split("\n")[0].split(" | ")[1]
|
755 |
+
ko_deplot_label_table=ko_deplot_convert_to_dataframe(ko_deplot_labeling_str)
|
756 |
+
|
757 |
+
aihub_deplot_labeling_str=process_json_file2(aihub_labeling_data_json)
|
758 |
+
aihub_deplot_label_title=aihub_deplot_labeling_str.split("\n")[1].split(":")[1]
|
759 |
+
aihub_deplot_label_table=aihub_deplot_convert_to_dataframe(aihub_deplot_labeling_str)
|
760 |
+
|
761 |
+
ko_deplot_RMS=evaluate_rms(result_model1,ko_deplot_labeling_str)
|
762 |
+
aihub_deplot_RMS=evaluate_rms(result_model2,aihub_deplot_labeling_str)
|
763 |
+
|
764 |
+
ko_deplot_score_table=pd.DataFrame({
|
765 |
+
'category': ['precision', 'recall', 'f1'],
|
766 |
+
'value': [
|
767 |
+
round(ko_deplot_RMS['table_datapoints_precision'],1),
|
768 |
+
round(ko_deplot_RMS['table_datapoints_recall'],1),
|
769 |
+
round(ko_deplot_RMS['table_datapoints_f1'],1)
|
770 |
+
]
|
771 |
+
})
|
772 |
+
aihub_deplot_score_table=pd.DataFrame({
|
773 |
+
'category': ['precision', 'recall', 'f1'],
|
774 |
+
'value': [
|
775 |
+
round(aihub_deplot_RMS['table_datapoints_precision'],1),
|
776 |
+
round(aihub_deplot_RMS['table_datapoints_recall'],1),
|
777 |
+
round(aihub_deplot_RMS['table_datapoints_f1'],1)
|
778 |
+
]
|
779 |
+
})
|
780 |
+
|
781 |
+
ko_deplot_generated_df_row=ko_deplot_table.shape[0]
|
782 |
+
aihub_deplot_generated_df_row=aihub_deplot_table.shape[0]
|
783 |
+
styled_ko_deplot_table=ko_deplot_table.style.applymap(highlighter1.compare_and_highlight,target_table=ko_deplot_label_table,pred_table_row=ko_deplot_generated_df_row,props='color:red')
|
784 |
+
styled_aihub_deplot_table=aihub_deplot_table.style.applymap(highlighter2.compare_and_highlight,target_table=aihub_deplot_label_table,pred_table_row=aihub_deplot_generated_df_row,props='color:red')
|
785 |
+
|
786 |
+
return gr.DataFrame(styled_ko_deplot_table,label=ko_deplot_generated_title+"(kodeplot ์ถ๋ก ๊ฒฐ๊ณผ)") , gr.DataFrame(styled_aihub_deplot_table,label=aihub_deplot_generated_title+"(aihub deplot ์ถ๋ก ๊ฒฐ๊ณผ)"),gr.DataFrame(ko_deplot_label_table,label=ko_deplot_label_title+"(kodeplot ์ ๋ต ํ
์ด๋ธ)"),gr.DataFrame(aihub_deplot_label_table,label=aihub_deplot_label_title+"(aihub deplot ์ ๋ต ํ
์ด๋ธ)"),ko_deplot_score_table, aihub_deplot_score_table
|
787 |
+
#return ko_deplot_table,aihub_deplot_table,aihub_deplot_label_table,ko_deplot_score_table,aihub_deplot_score_table
|
788 |
+
def inference(mode,image_uploader,file_uploader):
|
789 |
+
if(mode=="์ด๋ฏธ์ง ์
๋ก๋"):
|
790 |
+
ko_deplot_table, aihub_deplot_table, ko_deplot_label_table,aihub_deplot_label_table,ko_deplot_score_table, aihub_deplot_score_table = real_time_check(image_uploader)
|
791 |
+
return ko_deplot_table, aihub_deplot_table, ko_deplot_label_table, aihub_deplot_label_table,ko_deplot_score_table, aihub_deplot_score_table
|
792 |
+
else:
|
793 |
+
styled_ko_deplot_table, styled_aihub_deplot_table, ko_deplot_label_table, aihub_deplot_label_table,ko_deplot_score_table, aihub_deplot_score_table =non_real_time_check(file_uploader)
|
794 |
+
return styled_ko_deplot_table, styled_aihub_deplot_table, ko_deplot_label_table,aihub_deplot_label_table,ko_deplot_score_table, aihub_deplot_score_table
|
795 |
+
|
796 |
+
def interface_selector(selector):
|
797 |
+
if selector == "์ด๋ฏธ์ง ์
๋ก๋":
|
798 |
+
return gr.update(visible=True),gr.update(visible=False),gr.State("image_upload"),gr.update(visible=False),gr.update(visible=False)
|
799 |
+
elif selector == "ํ์ผ ์
๋ก๋":
|
800 |
+
return gr.update(visible=False),gr.update(visible=True),gr.State("file_upload"), gr.update(visible=True),gr.update(visible=True)
|
801 |
+
|
802 |
+
def file_selector(selector):
|
803 |
+
if selector == "low score ์ฐจํธ":
|
804 |
+
return gr.File("./bottom_20_percent_images.txt")
|
805 |
+
elif selector == "high score ์ฐจํธ":
|
806 |
+
return gr.File("./top_20_percent_images.txt")
|
807 |
+
|
808 |
+
def update_results(model_type):
|
809 |
+
if "ko_deplot" == model_type:
|
810 |
+
return gr.update(visible=True),gr.update(visible=True),gr.update(visible=False),gr.update(visible=False),gr.update(visible=True),gr.update(visible=False)
|
811 |
+
elif "aihub_deplot" == model_type:
|
812 |
+
return gr.update(visible=False),gr.update(visible=False),gr.update(visible=True),gr.update(visible=True),gr.update(visible=False),gr.update(visible=True)
|
813 |
+
else:
|
814 |
+
return gr.update(visible=True), gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True)
|
815 |
+
|
816 |
+
def display_image(image_file):
|
817 |
+
image=Image.open(image_file)
|
818 |
+
return image, os.path.basename(image_file)
|
819 |
+
|
820 |
+
def display_image_in_file(image_checklist):
|
821 |
+
global image_names, current_index
|
822 |
+
image_names = load_image_checklist(image_checklist)
|
823 |
+
image=show_image(current_index)
|
824 |
+
return image,image_names[current_index]
|
825 |
+
|
826 |
+
def update_file_based_on_chart_type(chart_type, all_file_path):
|
827 |
+
with open(all_file_path, 'r', encoding='utf-8') as file:
|
828 |
+
lines = file.readlines()
|
829 |
+
filtered_lines=[]
|
830 |
+
if chart_type == "์ ์ฒด":
|
831 |
+
filtered_lines = lines
|
832 |
+
elif chart_type == "์ผ๋ฐ ๊ฐ๋ก ๋ง๋ํ":
|
833 |
+
filtered_lines = [line for line in lines if "_horizontal bar_standard" in line]
|
834 |
+
elif chart_type=="๋์ ๊ฐ๋ก ๋ง๋ํ":
|
835 |
+
filtered_lines = [line for line in lines if "_horizontal bar_accumulation" in line]
|
836 |
+
elif chart_type=="100% ๊ธฐ์ค ๋์ ๊ฐ๋ก ๋ง๋ํ":
|
837 |
+
filtered_lines = [line for line in lines if "_horizontal bar_100per accumulation" in line]
|
838 |
+
elif chart_type=="์ผ๋ฐ ์ธ๋ก ๋ง๋ํ":
|
839 |
+
filtered_lines = [line for line in lines if "_vertical bar_standard" in line]
|
840 |
+
elif chart_type=="๋์ ์ธ๋ก ๋ง๋ํ":
|
841 |
+
filtered_lines = [line for line in lines if "_vertical bar_accumulation" in line]
|
842 |
+
elif chart_type=="100% ๊ธฐ์ค ๋์ ์ธ๋ก ๋ง๋ํ":
|
843 |
+
filtered_lines = [line for line in lines if "_vertical bar_100per accumulation" in line]
|
844 |
+
elif chart_type=="์ ํ":
|
845 |
+
filtered_lines = [line for line in lines if "_line_standard" in line]
|
846 |
+
elif chart_type=="์ํ":
|
847 |
+
filtered_lines = [line for line in lines if "_pie_standard" in line]
|
848 |
+
elif chart_type=="๊ธฐํ ๋ฐฉ์ฌ๏ฟฝ๏ฟฝ":
|
849 |
+
filtered_lines = [line for line in lines if "_etc_radial" in line]
|
850 |
+
elif chart_type=="๊ธฐํ ํผํฉํ":
|
851 |
+
filtered_lines = [line for line in lines if "_etc_mix" in line]
|
852 |
+
# ์๋ก์ด ํ์ผ์ ๊ธฐ๋ก
|
853 |
+
new_file_path = "./filtered_chart_images.txt"
|
854 |
+
with open(new_file_path, 'w', encoding='utf-8') as file:
|
855 |
+
file.writelines(filtered_lines)
|
856 |
+
|
857 |
+
return new_file_path
|
858 |
+
|
859 |
+
def handle_chart_type_change(chart_type,all_file_path):
|
860 |
+
new_file_path = update_file_based_on_chart_type(chart_type, all_file_path)
|
861 |
+
global image_names, current_index
|
862 |
+
image_names = load_image_checklist(new_file_path)
|
863 |
+
current_index=0
|
864 |
+
image=show_image(current_index)
|
865 |
+
return image,image_names[current_index]
|
866 |
+
|
867 |
+
with gr.Blocks() as iface:
|
868 |
+
mode=gr.State("image_upload")
|
869 |
+
with gr.Row():
|
870 |
+
with gr.Column():
|
871 |
+
#mode_label=gr.Text("์ด๋ฏธ์ง ์
๋ก๋๊ฐ ์ ํ๋์์ต๋๋ค.")
|
872 |
+
upload_option = gr.Radio(choices=["์ด๋ฏธ์ง ์
๋ก๋", "ํ์ผ ์
๋ก๋"], value="์ด๋ฏธ์ง ์
๋ก๋", label="์
๋ก๋ ์ต์
")
|
873 |
+
#with gr.Row():
|
874 |
+
#image_button = gr.Button("์ด๋ฏธ์ง ์
๋ก๋")
|
875 |
+
#file_button = gr.Button("ํ์ผ ์
๋ก๋")
|
876 |
+
|
877 |
+
# ์ด๋ฏธ์ง์ ํ์ผ ์
๋ก๋ ์ปดํฌ๋ํธ (์ด๊ธฐ์๋ ์จ๊น ์ํ)
|
878 |
+
# global image_uploader,file_uploader
|
879 |
+
image_uploader= gr.File(file_count="single",file_types=["image"],visible=True)
|
880 |
+
file_uploader= gr.File(file_count="single", file_types=[".txt"], visible=False)
|
881 |
+
file_upload_option=gr.Radio(choices=["low score ์ฐจํธ","high score ์ฐจํธ"],label="ํ์ผ ์
๋ก๋ ์ต์
",visible=False)
|
882 |
+
chart_type = gr.Dropdown(["์ผ๋ฐ ๊ฐ๋ก ๋ง๋ํ","๋์ ๊ฐ๋ก ๋ง๋ํ","100% ๊ธฐ์ค ๋์ ๊ฐ๋ก ๋ง๋ํ", "์ผ๋ฐ ์ธ๋ก ๋ง๋ํ","๋์ ์ธ๋ก ๋ง๋ํ","100% ๊ธฐ์ค ๋์ ์ธ๋ก ๋ง๋ํ","์ ํ", "์ํ", "๊ธฐํ ๋ฐฉ์ฌํ", "๊ธฐํ ํผํฉํ", "์ ์ฒด"], label="Chart Type", value="all")
|
883 |
+
model_type=gr.Dropdown(["ko_deplot","aihub_deplot","all"],label="model")
|
884 |
+
image_displayer=gr.Image(visible=True)
|
885 |
+
with gr.Row():
|
886 |
+
pre_button=gr.Button("์ด์ ",interactive="False")
|
887 |
+
next_button=gr.Button("๋ค์")
|
888 |
+
image_name=gr.Text("์ด๋ฏธ์ง ์ด๋ฆ",visible=False)
|
889 |
+
#image_button.click(interface_selector, inputs=gr.State("์ด๋ฏธ์ง ์
๋ก๋"), outputs=[image_uploader,file_uploader,mode,mode_label,image_name])
|
890 |
+
#file_button.click(interface_selector, inputs=gr.State("ํ์ผ ์
๋ก๋"), outputs=[image_uploader, file_uploader,mode,mode_label,image_name])
|
891 |
+
inference_button=gr.Button("์ถ๋ก ")
|
892 |
+
with gr.Column():
|
893 |
+
ko_deplot_generated_table=gr.DataFrame(visible=False,label="ko-deplot ์ถ๋ก ๊ฒฐ๊ณผ")
|
894 |
+
aihub_deplot_generated_table=gr.DataFrame(visible=False,label="aihub-deplot ์ถ๋ก ๊ฒฐ๊ณผ")
|
895 |
+
with gr.Column():
|
896 |
+
ko_deplot_label_table=gr.DataFrame(visible=False,label="ko-deplot ์ ๋ตํ
์ด๋ธ")
|
897 |
+
aihub_deplot_label_table=gr.DataFrame(visible=False,label="aihub-deplot ์ ๋ตํ
์ด๋ธ")
|
898 |
+
with gr.Column():
|
899 |
+
ko_deplot_score_table=gr.DataFrame(visible=False,label="ko_deplot ์ ์")
|
900 |
+
aihub_deplot_score_table=gr.DataFrame(visible=False,label="aihub_deplot ์ ์")
|
901 |
+
model_type.change(
|
902 |
+
update_results,
|
903 |
+
inputs=[model_type],
|
904 |
+
outputs=[ko_deplot_generated_table,ko_deplot_score_table,aihub_deplot_generated_table,aihub_deplot_score_table,ko_deplot_label_table,aihub_deplot_label_table]
|
905 |
+
)
|
906 |
+
|
907 |
+
upload_option.change(
|
908 |
+
interface_selector,
|
909 |
+
inputs=[upload_option],
|
910 |
+
outputs=[image_uploader, file_uploader, mode, image_name,file_upload_option]
|
911 |
+
)
|
912 |
+
|
913 |
+
file_upload_option.change(
|
914 |
+
file_selector,
|
915 |
+
inputs=[file_upload_option],
|
916 |
+
outputs=[file_uploader]
|
917 |
+
)
|
918 |
+
|
919 |
+
chart_type.change(handle_chart_type_change, inputs=[chart_type,file_uploader],outputs=[image_displayer,image_name])
|
920 |
+
image_uploader.upload(display_image,inputs=[image_uploader],outputs=[image_displayer,image_name])
|
921 |
+
file_uploader.change(display_image_in_file,inputs=[file_uploader],outputs=[image_displayer,image_name])
|
922 |
+
pre_button.click(previous_image, outputs=[image_displayer,image_name,pre_button,next_button])
|
923 |
+
next_button.click(next_image, outputs=[image_displayer,image_name,pre_button,next_button])
|
924 |
+
inference_button.click(inference,inputs=[upload_option,image_uploader,file_uploader],outputs=[ko_deplot_generated_table, aihub_deplot_generated_table, ko_deplot_label_table, aihub_deplot_label_table,ko_deplot_score_table, aihub_deplot_score_table])
|
925 |
+
|
926 |
+
|
927 |
+
if __name__ == "__main__":
|
928 |
+
print("Launching Gradio interface...")
|
929 |
+
sys.stdout.flush() # stdout ๋ฒํผ๋ฅผ ๋น์๋๋ค.
|
930 |
+
iface.launch(share=True)
|
931 |
+
time.sleep(2) # Gradio URL์ด ์ถ๋ ฅ๋ ๋๊น์ง ์ ์ ๊ธฐ๋ค๋ฆฝ๋๋ค.
|
932 |
+
sys.stdout.flush() # ๋ค์ stdout ๋ฒํผ๋ฅผ ๋น์๋๋ค.
|
933 |
+
# Gradio๊ฐ ์ ๊ณตํ๋ URLs์ ํ์ผ์ ๊ธฐ๋กํฉ๋๋ค.
|
934 |
+
with open("gradio_url.log", "w") as f:
|
935 |
+
print(iface.local_url, file=f)
|
936 |
+
print(iface.share_url, file=f)
|