import gradio as gr from transformers import AutoProcessor, Pix2StructForConditionalGeneration, T5Tokenizer, T5ForConditionalGeneration, Pix2StructProcessor from PIL import Image import torch import warnings import re import json import os import numpy as np import pandas as pd from tqdm import tqdm import argparse from scipy import optimize from typing import Optional import dataclasses import editdistance import itertools import sys import time import logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger() warnings.filterwarnings('ignore') MAX_PATCHES = 512 # Load the models and processor #device = torch.device("cpu") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Paths to the models ko_deplot_model_path = './model_epoch_1_210000.bin' aihub_deplot_model_path='./deplot_k.pt' t5_model_path = './ke_t5.pt' # Load first model ko-deplot processor1 = Pix2StructProcessor.from_pretrained('nuua/ko-deplot') model1 = Pix2StructForConditionalGeneration.from_pretrained('nuua/ko-deplot') model1.load_state_dict(torch.load(ko_deplot_model_path, map_location=device)) model1.to(device) # Load second model aihub-deplot processor2 = AutoProcessor.from_pretrained("ybelkada/pix2struct-base") model2 = Pix2StructForConditionalGeneration.from_pretrained("ybelkada/pix2struct-base") model2.load_state_dict(torch.load(aihub_deplot_model_path, map_location=device)) tokenizer = T5Tokenizer.from_pretrained("KETI-AIR/ke-t5-base") t5_model = T5ForConditionalGeneration.from_pretrained("KETI-AIR/ke-t5-base") t5_model.load_state_dict(torch.load(t5_model_path, map_location=device)) model2.to(device) t5_model.to(device) #ko-deplot 추론함수 # Function to format output def format_output(prediction): return prediction.replace('<0x0A>', '\n') # First model prediction ko-deplot def predict_model1(image): images = [image] inputs = processor1(images=images, text="What is the title of the chart", return_tensors="pt", padding=True) inputs = {k: v.to(device) for k, v in inputs.items()} # Move to GPU model1.eval() with torch.no_grad(): predictions = model1.generate(**inputs, max_new_tokens=4096) outputs = [processor1.decode(pred, skip_special_tokens=True) for pred in predictions] formatted_output = format_output(outputs[0]) return formatted_output def replace_unk(text): # 1. '제목:', '유형:' 글자 앞에 있는 는 \n로 바꿈 text = re.sub(r'(?=제목:|유형:)', '\n', text) # 2. '세로 ' 또는 '가로 '와 '대형' 사이에 있는 를 ""로 바꿈 text = re.sub(r'(?<=세로 |가로 )(?=대형)', '', text) # 3. 숫자와 텍스트 사이에 있는 를 \n로 바꿈 text = re.sub(r'(\d)([^\d])', r'\1\n\2', text) # 4. %, 원, 건, 명 뒤에 나오는 를 \n로 바꿈 text = re.sub(r'(?<=[%원건명\)])', '\n', text) # 5. 숫자와 숫자 사이에 있는 를 \n로 바꿈 text = re.sub(r'(\d)(\d)', r'\1\n\2', text) # 6. '형'이라는 글자와 ' |' 사이에 있는 를 \n로 바꿈 text = re.sub(r'형(?= \|)', '형\n', text) # 7. 나머지 를 모두 ""로 바꿈 text = text.replace('', '') return text # Second model prediction aihub_deplot def predict_model2(image): image = image.convert("RGB") inputs = processor2(images=image, return_tensors="pt", max_patches=MAX_PATCHES).to(device) flattened_patches = inputs.flattened_patches.to(device) attention_mask = inputs.attention_mask.to(device) model2.eval() t5_model.eval() with torch.no_grad(): deplot_generated_ids = model2.generate(flattened_patches=flattened_patches, attention_mask=attention_mask, max_length=1000) generated_datatable = processor2.batch_decode(deplot_generated_ids, skip_special_tokens=False)[0] generated_datatable = generated_datatable.replace("", "").replace("", "") refined_table = replace_unk(generated_datatable) return refined_table #function for converting aihub dataset labeling json file to ko-deplot data table def process_json_file(input_file): with open(input_file, 'r', encoding='utf-8') as file: data = json.load(file) # 필요한 데이터 추출 chart_type = data['metadata']['chart_sub'] title = data['annotations'][0]['title'] x_axis = data['annotations'][0]['axis_label']['x_axis'] y_axis = data['annotations'][0]['axis_label']['y_axis'] legend = data['annotations'][0]['legend'] data_labels = data['annotations'][0]['data_label'] is_legend = data['annotations'][0]['is_legend'] # 원하는 형식으로 변환 formatted_string = f"TITLE | {title} <0x0A> " if '가로' in chart_type: if is_legend: # 가로 차트 처리 formatted_string += " | ".join(legend) + " <0x0A> " for i in range(len(y_axis)): row = [y_axis[i]] for j in range(len(legend)): if i < len(data_labels[j]): row.append(str(data_labels[j][i])) # 데이터 값을 문자열로 변환 else: row.append("") # 데이터가 없는 경우 빈 문자열 추가 formatted_string += " | ".join(row) + " <0x0A> " else: # is_legend가 False인 경우 for i in range(len(y_axis)): row = [y_axis[i], str(data_labels[0][i])] formatted_string += " | ".join(row) + " <0x0A> " elif chart_type == "원형": # 원형 차트 처리 if legend: used_labels = legend else: used_labels = x_axis formatted_string += " | ".join(used_labels) + " <0x0A> " row = [data_labels[0][i] for i in range(len(used_labels))] formatted_string += " | ".join(row) + " <0x0A> " elif chart_type == "혼합형": # 혼합형 차트 처리 all_legends = [ann['legend'][0] for ann in data['annotations']] formatted_string += " | ".join(all_legends) + " <0x0A> " combined_data = [] for i in range(len(x_axis)): row = [x_axis[i]] for ann in data['annotations']: if i < len(ann['data_label'][0]): row.append(str(ann['data_label'][0][i])) # 데이터 값을 문자열로 변환 else: row.append("") # 데이터가 없는 경우 빈 문자열 추가 combined_data.append(" | ".join(row)) formatted_string += " <0x0A> ".join(combined_data) + " <0x0A> " else: # 기타 차트 처리 if is_legend: formatted_string += " | ".join(legend) + " <0x0A> " for i in range(len(x_axis)): row = [x_axis[i]] for j in range(len(legend)): if i < len(data_labels[j]): row.append(str(data_labels[j][i])) # 데이터 값을 문자열로 변환 else: row.append("") # 데이터가 없는 경우 빈 문자열 추가 formatted_string += " | ".join(row) + " <0x0A> " else: for i in range(len(x_axis)): if i < len(data_labels[0]): formatted_string += f"{x_axis[i]} | {str(data_labels[0][i])} <0x0A> " else: formatted_string += f"{x_axis[i]} | <0x0A> " # 데이터가 없는 경우 빈 문자열 추가 # 마지막 "<0x0A> " 제거 formatted_string = formatted_string[:-8] return format_output(formatted_string) def chart_data(data): datatable = [] num = len(data) for n in range(num): title = data[n]['title'] if data[n]['is_title'] else '' legend = data[n]['legend'] if data[n]['is_legend'] else '' datalabel = data[n]['data_label'] if data[n]['is_datalabel'] else [0] unit = data[n]['unit'] if data[n]['is_unit'] else '' base = data[n]['base'] if data[n]['is_base'] else '' x_axis_title = data[n]['axis_title']['x_axis'] y_axis_title = data[n]['axis_title']['y_axis'] x_axis = data[n]['axis_label']['x_axis'] if data[n]['is_axis_label_x_axis'] else [0] y_axis = data[n]['axis_label']['y_axis'] if data[n]['is_axis_label_y_axis'] else [0] if len(legend) > 1: datalabel = np.array(datalabel).transpose().tolist() datatable.append([title, legend, datalabel, unit, base, x_axis_title, y_axis_title, x_axis, y_axis]) return datatable def datatable(data, chart_type): data_table = '' num = len(data) if len(data) == 2: temp = [] temp.append(f"대상: {data[0][4]}") temp.append(f"제목: {data[0][0]}") temp.append(f"유형: {' '.join(chart_type[0:2])}") temp.append(f"{data[0][5]} | {data[0][1][0]}({data[0][3]}) | {data[1][1][0]}({data[1][3]})") x_axis = data[0][7] for idx, x in enumerate(x_axis): temp.append(f"{x} | {data[0][2][0][idx]} | {data[1][2][0][idx]}") data_table = '\n'.join(temp) else: for n in range(num): temp = [] title, legend, datalabel, unit, base, x_axis_title, y_axis_title, x_axis, y_axis = data[n] legend = [element + f"({unit})" for element in legend] if len(legend) > 1: temp.append(f"대상: {base}") temp.append(f"제목: {title}") temp.append(f"유형: {' '.join(chart_type[0:2])}") temp.append(f"{x_axis_title} | {' | '.join(legend)}") if chart_type[2] == "원형": datalabel = sum(datalabel, []) temp.append(f"{' | '.join([str(d) for d in datalabel])}") data_table = '\n'.join(temp) else: axis = y_axis if chart_type[2] == "가로 막대형" else x_axis for idx, (x, d) in enumerate(zip(axis, datalabel)): temp_d = [str(e) for e in d] temp_d = " | ".join(temp_d) row = f"{x} | {temp_d}" temp.append(row) data_table = '\n'.join(temp) else: temp.append(f"대상: {base}") temp.append(f"제목: {title}") temp.append(f"유형: {' '.join(chart_type[0:2])}") temp.append(f"{x_axis_title} | {unit}") axis = y_axis if chart_type[2] == "가로 막대형" else x_axis datalabel = datalabel[0] for idx, x in enumerate(axis): row = f"{x} | {str(datalabel[idx])}" temp.append(row) data_table = '\n'.join(temp) return data_table #function for converting aihub dataset labeling json file to aihub-deplot data table def process_json_file2(input_file): with open(input_file, 'r', encoding='utf-8') as file: data = json.load(file) # 필요한 데이터 추출 chart_multi = data['metadata']['chart_multi'] chart_main = data['metadata']['chart_main'] chart_sub = data['metadata']['chart_sub'] chart_type = [chart_multi, chart_sub, chart_main] chart_annotations = data['annotations'] charData = chart_data(chart_annotations) dataTable = datatable(charData, chart_type) return dataTable # RMS def _to_float(text): # 단위 떼고 숫자만..? try: if text.endswith("%"): # Convert percentages to floats. return float(text.rstrip("%")) / 100.0 else: return float(text) except ValueError: return None def _get_relative_distance( target, prediction, theta = 1.0 ): """Returns min(1, |target-prediction|/|target|).""" if not target: return int(not prediction) distance = min(abs((target - prediction) / target), 1) return distance if distance < theta else 1 def anls_metric(target: str, prediction: str, theta: float = 0.5): edit_distance = editdistance.eval(target, prediction) normalize_ld = edit_distance / max(len(target), len(prediction)) return 1 - normalize_ld if normalize_ld < theta else 0 def _permute(values, indexes): return tuple(values[i] if i < len(values) else "" for i in indexes) @dataclasses.dataclass(frozen=True) class Table: """Helper class for the content of a markdown table.""" base: Optional[str] = None title: Optional[str] = None chartType: Optional[str] = None headers: tuple[str, Ellipsis] = dataclasses.field(default_factory=tuple) rows: tuple[tuple[str, Ellipsis], Ellipsis] = dataclasses.field(default_factory=tuple) def permuted(self, indexes): """Builds a version of the table changing the column order.""" return Table( base=self.base, title=self.title, chartType=self.chartType, headers=_permute(self.headers, indexes), rows=tuple(_permute(row, indexes) for row in self.rows), ) def aligned( self, headers, text_theta = 0.5 ): """Builds a column permutation with headers in the most correct order.""" if len(headers) != len(self.headers): raise ValueError(f"Header length {headers} must match {self.headers}.") distance = [] for h2 in self.headers: distance.append( [ 1 - anls_metric(h1, h2, text_theta) for h1 in headers ] ) cost_matrix = np.array(distance) row_ind, col_ind = optimize.linear_sum_assignment(cost_matrix) permutation = [idx for _, idx in sorted(zip(col_ind, row_ind))] score = (1 - cost_matrix)[permutation[1:], range(1, len(row_ind))].prod() return self.permuted(permutation), score def _parse_table(text, transposed = False): # 표 제목, 열 이름, 행 찾기 """Builds a table from a markdown representation.""" lines = text.lower().splitlines() if not lines: return Table() if lines[0].startswith("대상: "): base = lines[0][len("대상: ") :].strip() offset = 1 # else: base = None offset = 0 if lines[1].startswith("제목: "): title = lines[1][len("제목: ") :].strip() offset = 2 # else: title = None offset = 1 if lines[2].startswith("유형: "): chartType = lines[2][len("유형: ") :].strip() offset = 3 # else: chartType = None if len(lines) < offset + 1: return Table(base=base, title=title, chartType=chartType) rows = [] for line in lines[offset:]: rows.append(tuple(v.strip() for v in line.split(" | "))) if transposed: rows = [tuple(row) for row in itertools.zip_longest(*rows, fillvalue="")] return Table(base=base, title=title, chartType=chartType, headers=rows[0], rows=tuple(rows[1:])) def _get_table_datapoints(table): datapoints = {} if table.base is not None: datapoints["대상"] = table.base if table.title is not None: datapoints["제목"] = table.title if table.chartType is not None: datapoints["유형"] = table.chartType if not table.rows or len(table.headers) <= 1: return datapoints for row in table.rows: for header, cell in zip(table.headers[1:], row[1:]): #print(f"{row[0]} {header} >> {cell}") datapoints[f"{row[0]} {header}"] = cell # return datapoints def _get_datapoint_metric( # target, prediction, text_theta=0.5, number_theta=0.1, ): """Computes a metric that scores how similar two datapoint pairs are.""" key_metric = anls_metric( target[0], prediction[0], text_theta ) pred_float = _to_float(prediction[1]) # 숫자인지 확인 target_float = _to_float(target[1]) if pred_float is not None and target_float: return key_metric * ( 1 - _get_relative_distance(target_float, pred_float, number_theta) # 숫자면 상대적 거리값 계산 ) elif target[1] == prediction[1]: return key_metric else: return key_metric * anls_metric( target[1], prediction[1], text_theta ) def _table_datapoints_precision_recall_f1( # 찐 계산 target_table, prediction_table, text_theta = 0.5, number_theta = 0.1, ): """Calculates matching similarity between two tables as dicts.""" target_datapoints = list(_get_table_datapoints(target_table).items()) prediction_datapoints = list(_get_table_datapoints(prediction_table).items()) if not target_datapoints and not prediction_datapoints: return 1, 1, 1 if not target_datapoints: return 0, 1, 0 if not prediction_datapoints: return 1, 0, 0 distance = [] for t, _ in target_datapoints: distance.append( [ 1 - anls_metric(t, p, text_theta) for p, _ in prediction_datapoints ] ) cost_matrix = np.array(distance) row_ind, col_ind = optimize.linear_sum_assignment(cost_matrix) score = 0 for r, c in zip(row_ind, col_ind): score += _get_datapoint_metric( target_datapoints[r], prediction_datapoints[c], text_theta, number_theta ) if score == 0: return 0, 0, 0 precision = score / len(prediction_datapoints) recall = score / len(target_datapoints) return precision, recall, 2 * precision * recall / (precision + recall) def table_datapoints_precision_recall_per_point( # 각각 계산... targets, predictions, text_theta = 0.5, number_theta = 0.1, ): """Computes precisin recall and F1 metrics given two flattened tables. Parses each string into a dictionary of keys and values using row and column headers. Then we match keys between the two dicts as long as their relative levenshtein distance is below a threshold. Values are also compared with ANLS if strings or relative distance if they are numeric. Args: targets: list of list of strings. predictions: list of strings. text_theta: relative edit distance above this is set to the maximum of 1. number_theta: relative error rate above this is set to the maximum of 1. Returns: Dictionary with per-point precision, recall and F1 """ assert len(targets) == len(predictions) per_point_scores = {"precision": [], "recall": [], "f1": []} for pred, target in zip(predictions, targets): all_metrics = [] for transposed in [True, False]: pred_table = _parse_table(pred, transposed=transposed) target_table = _parse_table(target, transposed=transposed) all_metrics.extend([_table_datapoints_precision_recall_f1(target_table, pred_table, text_theta, number_theta)]) p, r, f = max(all_metrics, key=lambda x: x[-1]) per_point_scores["precision"].append(p) per_point_scores["recall"].append(r) per_point_scores["f1"].append(f) return per_point_scores def table_datapoints_precision_recall( # deplot 성능지표 targets, predictions, text_theta = 0.5, number_theta = 0.1, ): """Aggregated version of table_datapoints_precision_recall_per_point(). Same as table_datapoints_precision_recall_per_point() but returning aggregated scores instead of per-point scores. Args: targets: list of list of strings. predictions: list of strings. text_theta: relative edit distance above this is set to the maximum of 1. number_theta: relative error rate above this is set to the maximum of 1. Returns: Dictionary with aggregated precision, recall and F1 """ score_dict = table_datapoints_precision_recall_per_point( targets, predictions, text_theta, number_theta ) return { "table_datapoints_precision": ( sum(score_dict["precision"]) / len(targets) ), "table_datapoints_recall": ( sum(score_dict["recall"]) / len(targets) ), "table_datapoints_f1": sum(score_dict["f1"]) / len(targets), } def evaluate_rms(generated_table,label_table): predictions=[generated_table] targets=[label_table] RMS = table_datapoints_precision_recall(targets, predictions) return RMS def is_float(s): try: float(s) return True except ValueError: return False def ko_deplot_convert_to_dataframe(table_str): lines = table_str.strip().split("\n") title=lines[0].split(" | ")[1] if(len(lines[1].split(" | "))==len(lines[2].split(" | "))): headers=["0","1"] if(is_float(lines[1].split(" | ")[1]) or lines[1].split(" | ")[0]==""): data=[line.split(" | ") for line in lines[1:]] df=pd.DataFrame(data,columns=headers) return df else: category=lines[1].split(" | ") value=lines[2].split(" | ") df=pd.DataFrame({"범례":category,"값":value}) return df else: headers=[] data=[] for i in range(len(lines[2].split(" | "))): headers.append(f"{i}") line1=lines[1].split(" | ") line1.insert(0," ") data.append(line1) for line in lines[2:]: data.append(line.split(" | ")) df = pd.DataFrame(data, columns=headers) return df def aihub_deplot_convert_to_dataframe(table_str): lines = table_str.strip().split("\n") headers = [] if(len(lines[3].split(" | "))>len(lines[4].split(" | "))): category=lines[3].split(" | ") del category[0] value=lines[4].split(" | ") df=pd.DataFrame({"범례":category,"값":value}) return df else: for i in range(len(lines[3].split(" | "))): headers.append(f"{i}") data = [line.split(" | ") for line in lines[3:]] df = pd.DataFrame(data, columns=headers) return df class Highlighter: def __init__(self): self.row = 0 self.col = 0 def compare_and_highlight(self, pred_table_elem, target_table, pred_table_row, props=''): if self.row >= pred_table_row: self.col += 1 self.row = 0 if pred_table_elem != target_table.iloc[self.row, self.col]: self.row += 1 return props else: self.row += 1 return None # 1. 데이터 로드 aihub_deplot_result_df = pd.read_csv('./aihub_deplot_result.csv') ko_deplot_result= './ko_deplot_result.json' # 2. 체크해야 하는 이미지 파일 로드 def load_image_checklist(file): with open(file, 'r') as f: #image_names = [f'"{line.strip()}"' for line in f] image_names = f.read().splitlines() return image_names # 3. 현재 인덱스를 추적하기 위한 변수 current_index = 0 image_names = [] def show_image(current_idx): image_name=image_names[current_idx] image_path = f"./images/{image_name}.jpg" if not os.path.exists(image_path): raise FileNotFoundError(f"Image file not found: {image_path}") return Image.open(image_path) # 4. 버튼 클릭 이벤트 핸들러 def non_real_time_check(file): highlighter1 = Highlighter() highlighter2 = Highlighter() #global image_names, current_index #image_names = load_image_checklist(file) #current_index = 0 #image=show_image(current_index) file_name =image_names[current_index].replace("Source","Label") json_path="./ko_deplot_labeling_data.json" with open(json_path, 'r', encoding='utf-8') as file: json_data = json.load(file) for key, value in json_data.items(): if key == file_name: ko_deplot_labeling_str=value.get("txt").replace("<0x0A>","\n") ko_deplot_label_title=ko_deplot_labeling_str.split(" \n ")[0].replace("TITLE | ","제목:") break ko_deplot_rms_path="./ko_deplot_rms.txt" with open(ko_deplot_rms_path,'r',encoding='utf-8') as file: lines=file.readlines() flag=0 for line in lines: parts=line.strip().split(", ") if(len(parts)==2 and parts[0]==image_names[current_index]): ko_deplot_rms=parts[1] flag=1 break if(flag==0): ko_deplot_rms="none" ko_deplot_generated_title,ko_deplot_generated_table=ko_deplot_display_results(current_index) aihub_deplot_generated_table,aihub_deplot_label_table,aihub_deplot_generated_title,aihub_deplot_label_title=aihub_deplot_display_results(current_index) #ko_deplot_RMS=evaluate_rms(ko_deplot_generated_table,ko_deplot_labeling_str) aihub_deplot_RMS=evaluate_rms(aihub_deplot_generated_table,aihub_deplot_label_table) if flag == 1: value = [round(float(ko_deplot_rms), 1)] else: value = [0] ko_deplot_score_table = pd.DataFrame({ 'category': ['f1'], 'value': value }) aihub_deplot_score_table=pd.DataFrame({ 'category': ['precision', 'recall', 'f1'], 'value': [ round(aihub_deplot_RMS['table_datapoints_precision'],1), round(aihub_deplot_RMS['table_datapoints_recall'],1), round(aihub_deplot_RMS['table_datapoints_f1'],1) ] }) ko_deplot_generated_df=ko_deplot_convert_to_dataframe(ko_deplot_generated_table) aihub_deplot_generated_df=aihub_deplot_convert_to_dataframe(aihub_deplot_generated_table) ko_deplot_labeling_df=ko_deplot_convert_to_dataframe(ko_deplot_labeling_str) aihub_deplot_labeling_df=aihub_deplot_convert_to_dataframe(aihub_deplot_label_table) ko_deplot_generated_df_row=ko_deplot_generated_df.shape[0] aihub_deplot_generated_df_row=aihub_deplot_generated_df.shape[0] styled_ko_deplot_table=ko_deplot_generated_df.style.applymap(highlighter1.compare_and_highlight,target_table=ko_deplot_labeling_df,pred_table_row=ko_deplot_generated_df_row,props='color:red') styled_aihub_deplot_table=aihub_deplot_generated_df.style.applymap(highlighter2.compare_and_highlight,target_table=aihub_deplot_labeling_df,pred_table_row=aihub_deplot_generated_df_row,props='color:red') #return ko_deplot_convert_to_dataframe(ko_deplot_generated_table), aihub_deplot_convert_to_dataframe(aihub_deplot_generated_table), aihub_deplot_convert_to_dataframe(label_table), ko_deplot_score_table, aihub_deplot_score_table return gr.DataFrame(styled_ko_deplot_table,label=ko_deplot_generated_title+"(ko deplot 추론 결과)"),gr.DataFrame(styled_aihub_deplot_table,label=aihub_deplot_generated_title+"(aihub deplot 추론 결과)"),gr.DataFrame(ko_deplot_labeling_df,label=ko_deplot_label_title+"(ko deplot 정답 테이블)"), gr.DataFrame(aihub_deplot_labeling_df,label=aihub_deplot_label_title+"(aihub deplot 정답 테이블)"),ko_deplot_score_table, aihub_deplot_score_table def ko_deplot_display_results(index): filename=image_names[index]+".jpg" with open(ko_deplot_result, 'r', encoding='utf-8') as f: data = json.load(f) for entry in data: if entry['filename'].endswith(filename): #return entry['table'] parts=entry['table'].split(" \n ",1) return parts[0].replace("TITLE | ","제목:"),entry['table'] def aihub_deplot_display_results(index): if index < 0 or index >= len(image_names): return "Index out of range", None, None image_name = image_names[index] image_row = aihub_deplot_result_df[aihub_deplot_result_df['data_id'] == image_name] if not image_row.empty: generated_table = image_row['generated_table'].values[0] generated_title=generated_table.split("\n")[1] label_table = image_row['label_table'].values[0] label_title=label_table.split("\n")[1] return generated_table, label_table, generated_title, label_title else: return "No results found for the image", None, None def previous_image(): global current_index if current_index>0: current_index-=1 image=show_image(current_index) return image, image_names[current_index],gr.update(interactive=current_index>0), gr.update(interactive=current_index0), gr.update(interactive=current_index