File size: 8,835 Bytes
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bd7964
 
 
 
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a381e80
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee3801
95f8bbc
 
 
 
 
 
 
 
2ee3801
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa34300
95f8bbc
 
 
aa34300
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
fb96f4f
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee3801
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffcc1a7
95f8bbc
 
 
 
 
 
 
 
 
 
2ee3801
95f8bbc
 
 
 
 
 
 
 
 
 
2ee3801
95f8bbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ee3801
95f8bbc
 
 
 
 
 
2ee3801
ffcc1a7
6bd7964
 
 
 
 
 
ffcc1a7
 
 
 
 
 
 
 
 
5764d8b
2ee3801
5764d8b
ed7eb3f
 
6bd7964
 
 
 
 
 
 
 
ed7eb3f
5764d8b
 
95f8bbc
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import time

from common.arguments import parse_args
from common.camera import *
from common.generators import *
from common.loss import *
from common.model import *
from common.utils import Timer, evaluate, add_path
from common.inference_3d import *

from model.block.refine import refine
from model.stmo import Model

import HPE2keyframes as Hk 

from datetime import datetime
import pytz


# from joints_detectors.openpose.main import generate_kpts as open_pose


os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"  # see issue #152
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

metadata = {'layout_name': 'coco', 'num_joints': 17, 'keypoints_symmetry': [[1, 3, 5, 7, 9, 11, 13, 15], [2, 4, 6, 8, 10, 12, 14, 16]]}

add_path()


# record time
def ckpt_time(ckpt=None):
    if not ckpt:
        return time.time()
    else:
        return time.time() - float(ckpt), time.time()


time0 = ckpt_time()


def get_detector_2d(detector_name):
    def get_alpha_pose():
        from joints_detectors.Alphapose.gene_npz import generate_kpts as alpha_pose
        return alpha_pose

    detector_map = {
        'alpha_pose': get_alpha_pose,
        # 'hr_pose': get_hr_pose,
        # 'open_pose': open_pose
    }

    assert detector_name in detector_map, f'2D detector: {detector_name} not implemented yet!'

    return detector_map[detector_name]()


class Skeleton:
    def parents(self):
        return np.array([-1, 0, 1, 2, 0, 4, 5, 0, 7, 8, 9, 8, 11, 12, 8, 14, 15])

    def joints_right(self):
        return [1, 2, 3, 14, 15, 16]


def main(args, progress):
    detector_2d = get_detector_2d(args.detector_2d)

    assert detector_2d, 'detector_2d should be in ({alpha, hr, open}_pose)'

    # 2D kpts loads or generate
    #args.input_npz = './outputs/alpha_pose_skiing_cut/skiing_cut.npz'
    if not args.input_npz:
        video_name = args.viz_video
        keypoints = detector_2d(video_name, progress)
    else:
        npz = np.load(args.input_npz)
        keypoints = npz['kpts']  # (N, 17, 2)

    keypoints_symmetry = metadata['keypoints_symmetry']
    kps_left, kps_right = list(keypoints_symmetry[0]), list(keypoints_symmetry[1])
    joints_left, joints_right = list([4, 5, 6, 11, 12, 13]), list([1, 2, 3, 14, 15, 16])

    # normlization keypoints  Suppose using the camera parameter
    keypoints = normalize_screen_coordinates(keypoints[..., :2], w=1000, h=1002)

    # model_pos = TemporalModel(17, 2, 17, filter_widths=[3, 3, 3, 3, 3], causal=args.causal, dropout=args.dropout, channels=args.channels,
    #                           dense=args.dense)

    model = {}
    model['trans'] = Model(args)


    # if torch.cuda.is_available():
    #     model_pos = model_pos

    ckpt, time1 = ckpt_time(time0)
    print('-------------- load data spends {:.2f} seconds'.format(ckpt))

    # load trained model
    # chk_filename = os.path.join(args.checkpoint, args.resume if args.resume else args.evaluate)
    # print('Loading checkpoint', chk_filename)
    # checkpoint = torch.load(chk_filename, map_location=lambda storage, loc: storage)  # 把loc映射到storage
    # model_pos.load_state_dict(checkpoint['model_pos'])

    model_dict = model['trans'].state_dict()

    no_refine_path = "checkpoint/PSTMOS_no_refine_48_5137_in_the_wild.pth"
    pre_dict = torch.load(no_refine_path, map_location=torch.device('cpu'))
    for key, value in pre_dict.items():
        name = key[7:]
        model_dict[name] = pre_dict[key]
    model['trans'].load_state_dict(model_dict)


    ckpt, time2 = ckpt_time(time1)
    print('-------------- load 3D model spends {:.2f} seconds'.format(ckpt))

    #  Receptive field: 243 frames for args.arc [3, 3, 3, 3, 3]
    receptive_field = args.frames
    pad = (receptive_field - 1) // 2  # Padding on each side
    causal_shift = 0

    print('Rendering...')
    input_keypoints = keypoints.copy()
    print(input_keypoints.shape)
    # gen = UnchunkedGenerator(None, None, [input_keypoints],
    #                          pad=pad, causal_shift=causal_shift, augment=args.test_time_augmentation,
    #                          kps_left=kps_left, kps_right=kps_right, joints_left=joints_left, joints_right=joints_right)
    # test_data = Fusion(opt=args, train=False, dataset=dataset, root_path=root_path, MAE=opt.MAE)
    # test_dataloader = torch.utils.data.DataLoader(test_data, batch_size=1,
    #                                               shuffle=False, num_workers=0, pin_memory=True)
    #prediction = evaluate(gen, model_pos, return_predictions=True)

    gen = Evaluate_Generator(128, None, None, [input_keypoints], args.stride,
                             pad=pad, causal_shift=causal_shift, augment=args.test_time_augmentation, shuffle=False,
                             kps_left=kps_left, kps_right=kps_right, joints_left=joints_left, joints_right=joints_right)

    prediction = val(args, gen, model, progress)

    # save 3D joint points
    # np.save(f'outputs/test_3d_{args.video_name}_output.npy', prediction, allow_pickle=True)

    rot = np.array([0.14070565, -0.15007018, -0.7552408, 0.62232804], dtype=np.float32)
    prediction = camera_to_world(prediction, R=rot, t=0)

    # We don't have the trajectory, but at least we can rebase the height
    prediction[:, :, 2] -= np.min(prediction[:, :, 2])

    output_dir_dict = {}
    npy_filename = f'output_3Dpose_npy/{args.video_name}.npy'
    output_dir_dict['npy'] = npy_filename
    np.save(npy_filename, prediction, allow_pickle=True)

    anim_output = {'Skeleton': prediction}
    input_keypoints = image_coordinates(input_keypoints[..., :2], w=1000, h=1002)

    ckpt, time3 = ckpt_time(time2)
    print('-------------- generate reconstruction 3D data spends {:.2f} seconds'.format(ckpt))

    if not args.viz_output:
        args.viz_output = 'outputs/alpha_result.mp4'

    from common.visualization import render_animation
    render_animation(input_keypoints, anim_output,
                     Skeleton(), 25, args.viz_bitrate, np.array(70., dtype=np.float32), args.viz_output, progress,
                     limit=args.viz_limit, downsample=args.viz_downsample, size=args.viz_size,
                     input_video_path=args.viz_video, viewport=(1000, 1002),
                     input_video_skip=args.viz_skip)

    ckpt, time4 = ckpt_time(time3)
    print('total spend {:2f} second'.format(ckpt))

    return output_dir_dict


def inference_video(video_path, detector_2d, progress):
    """
    Do image -> 2d points -> 3d points to video.
    :param detector_2d: used 2d joints detector. Can be {alpha_pose, hr_pose}
    :param video_path: relative to outputs
    :return: None
    """
    args = parse_args()

    args.detector_2d = detector_2d
    dir_name = os.path.dirname(video_path)
    basename = os.path.basename(video_path)
    args.video_name = basename[:basename.rfind('.')]
    args.viz_video = video_path
    args.viz_output = f'output_videos/{args.video_name}.mp4'
    args.evaluate = 'pretrained_h36m_detectron_coco.bin'

    with Timer(video_path):
        output_dir_dict = main(args, progress)

    output_dir_dict["output_videos"] = args.viz_output
    output_dir_dict["video_name"] = args.video_name
    return output_dir_dict


def gr_video2mc(video_path, progress):

    print("\n>>>>> One video uploaded <<<<<\n")
    china_tz = pytz.timezone('Asia/Shanghai')
    current_time = datetime.now(china_tz)
    formatted_time = current_time.strftime('%Y-%m-%d %H:%M:%S')
    print(f"Start Time: {formatted_time}\n")

    if not os.path.exists('output_3Dpose_npy'):
        os.makedirs('output_3Dpose_npy')
    if not os.path.exists('output_alphapose'):
        os.makedirs('output_alphapose')
    if not os.path.exists('output_miframes'):
        os.makedirs('output_miframes')
    if not os.path.exists('output_videos'):
        os.makedirs('output_videos')

    FPS_mine_imator = 30
    output_dir_dict = inference_video(video_path, 'alpha_pose', progress)
    Hk.hpe2keyframes(output_dir_dict['npy'], FPS_mine_imator, f"output_miframes/{output_dir_dict['video_name']}.miframes")
    path1 = os.path.abspath(f"output_miframes/{output_dir_dict['video_name']}.miframes")
    path2 = os.path.abspath(f"output_videos/{output_dir_dict['video_name']}.mp4")

    print("\n----- One video processed -----\n")
    china_tz = pytz.timezone('Asia/Shanghai')
    current_time = datetime.now(china_tz)
    formatted_time = current_time.strftime('%Y-%m-%d %H:%M:%S')
    print(f"Finished Time: {formatted_time}\n")


    return path1, path2


if __name__ == '__main__':

    files = os.listdir('./input_videos')
    FPS_mine_imator = 30
    for file in files:
        output_dir_dict = inference_video(os.path.join('input_videos', file), 'alpha_pose')
        Hk.hpe2keyframes(output_dir_dict['npy'], FPS_mine_imator, f"output_miframes/{output_dir_dict['video_name']}.miframes")