# Copyright (c) 2018-present, Facebook, Inc. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # import torch.nn as nn class TemporalModelBase(nn.Module): """ Do not instantiate this class. """ def __init__(self, num_joints_in, in_features, num_joints_out, filter_widths, causal, dropout, channels): super().__init__() # Validate input for fw in filter_widths: assert fw % 2 != 0, 'Only odd filter widths are supported' self.num_joints_in = num_joints_in self.in_features = in_features self.num_joints_out = num_joints_out self.filter_widths = filter_widths self.drop = nn.Dropout(dropout) self.relu = nn.ReLU(inplace=True) self.pad = [filter_widths[0] // 2] self.expand_bn = nn.BatchNorm1d(channels, momentum=0.1) self.shrink = nn.Conv1d(channels, num_joints_out * 3, 1) def set_bn_momentum(self, momentum): self.expand_bn.momentum = momentum for bn in self.layers_bn: bn.momentum = momentum def receptive_field(self): """ Return the total receptive field of this model as # of frames. """ frames = 0 for f in self.pad: frames += f return 1 + 2 * frames def total_causal_shift(self): """ Return the asymmetric offset for sequence padding. The returned value is typically 0 if causal convolutions are disabled, otherwise it is half the receptive field. """ frames = self.causal_shift[0] next_dilation = self.filter_widths[0] for i in range(1, len(self.filter_widths)): frames += self.causal_shift[i] * next_dilation next_dilation *= self.filter_widths[i] return frames def forward(self, x): assert len(x.shape) == 4 assert x.shape[-2] == self.num_joints_in assert x.shape[-1] == self.in_features sz = x.shape[:3] x = x.view(x.shape[0], x.shape[1], -1) x = x.permute(0, 2, 1) x = self._forward_blocks(x) x = x.permute(0, 2, 1) x = x.view(sz[0], -1, self.num_joints_out, 3) return x class TemporalModel(TemporalModelBase): """ Reference 3D pose estimation model with temporal convolutions. This implementation can be used for all use-cases. """ def __init__(self, num_joints_in, in_features, num_joints_out, filter_widths, causal=False, dropout=0.25, channels=1024, dense=False): """ Initialize this model. Arguments: num_joints_in -- number of input joints (e.g. 17 for Human3.6M) in_features -- number of input features for each joint (typically 2 for 2D input) num_joints_out -- number of output joints (can be different than input) filter_widths -- list of convolution widths, which also determines the # of blocks and receptive field causal -- use causal convolutions instead of symmetric convolutions (for real-time applications) dropout -- dropout probability channels -- number of convolution channels dense -- use regular dense convolutions instead of dilated convolutions (ablation experiment) """ super().__init__(num_joints_in, in_features, num_joints_out, filter_widths, causal, dropout, channels) self.expand_conv = nn.Conv1d(num_joints_in * in_features, channels, filter_widths[0], bias=False) layers_conv = [] layers_bn = [] self.causal_shift = [(filter_widths[0]) // 2 if causal else 0] next_dilation = filter_widths[0] for i in range(1, len(filter_widths)): self.pad.append((filter_widths[i] - 1) * next_dilation // 2) self.causal_shift.append((filter_widths[i] // 2 * next_dilation) if causal else 0) layers_conv.append(nn.Conv1d(channels, channels, filter_widths[i] if not dense else (2 * self.pad[-1] + 1), dilation=next_dilation if not dense else 1, bias=False)) layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1)) layers_conv.append(nn.Conv1d(channels, channels, 1, dilation=1, bias=False)) layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1)) next_dilation *= filter_widths[i] self.layers_conv = nn.ModuleList(layers_conv) self.layers_bn = nn.ModuleList(layers_bn) def _forward_blocks(self, x): x = self.drop(self.relu(self.expand_bn(self.expand_conv(x)))) for i in range(len(self.pad) - 1): pad = self.pad[i + 1] shift = self.causal_shift[i + 1] # clip res = x[:, :, pad + shift: x.shape[2] - pad + shift] x = self.drop(self.relu(self.layers_bn[2 * i](self.layers_conv[2 * i](x)))) x = res + self.drop(self.relu(self.layers_bn[2 * i + 1](self.layers_conv[2 * i + 1](x)))) x = self.shrink(x) return x class TemporalModelOptimized1f(TemporalModelBase): """ 3D pose estimation model optimized for single-frame batching, i.e. where batches have input length = receptive field, and output length = 1. This scenario is only used for training when stride == 1. This implementation replaces dilated convolutions with strided convolutions to avoid generating unused intermediate results. The weights are interchangeable with the reference implementation. """ def __init__(self, num_joints_in, in_features, num_joints_out, filter_widths, causal=False, dropout=0.25, channels=1024): """ Initialize this model. Arguments: num_joints_in -- number of input joints (e.g. 17 for Human3.6M) in_features -- number of input features for each joint (typically 2 for 2D input) num_joints_out -- number of output joints (can be different than input) filter_widths -- list of convolution widths, which also determines the # of blocks and receptive field causal -- use causal convolutions instead of symmetric convolutions (for real-time applications) dropout -- dropout probability channels -- number of convolution channels """ super().__init__(num_joints_in, in_features, num_joints_out, filter_widths, causal, dropout, channels) self.expand_conv = nn.Conv1d(num_joints_in * in_features, channels, filter_widths[0], stride=filter_widths[0], bias=False) layers_conv = [] layers_bn = [] self.causal_shift = [(filter_widths[0] // 2) if causal else 0] next_dilation = filter_widths[0] for i in range(1, len(filter_widths)): self.pad.append((filter_widths[i] - 1) * next_dilation // 2) self.causal_shift.append((filter_widths[i] // 2) if causal else 0) layers_conv.append(nn.Conv1d(channels, channels, filter_widths[i], stride=filter_widths[i], bias=False)) layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1)) layers_conv.append(nn.Conv1d(channels, channels, 1, dilation=1, bias=False)) layers_bn.append(nn.BatchNorm1d(channels, momentum=0.1)) next_dilation *= filter_widths[i] self.layers_conv = nn.ModuleList(layers_conv) self.layers_bn = nn.ModuleList(layers_bn) def _forward_blocks(self, x): x = self.drop(self.relu(self.expand_bn(self.expand_conv(x)))) for i in range(len(self.pad) - 1): res = x[:, :, self.causal_shift[i + 1] + self.filter_widths[i + 1] // 2:: self.filter_widths[i + 1]] x = self.drop(self.relu(self.layers_bn[2 * i](self.layers_conv[2 * i](x)))) x = res + self.drop(self.relu(self.layers_bn[2 * i + 1](self.layers_conv[2 * i + 1](x)))) x = self.shrink(x) return x