Spaces:
Sleeping
Sleeping
from transformers import pipeline | |
from datasets import load_dataset | |
import gradio as gr | |
import torch | |
from diffusers import DiffusionPipeline | |
pipe_ar = pipeline('text-generation', framework='pt', model='akhooli/ap2023', tokenizer='akhooli/ap2023') | |
pipe_en = pipeline("text-generation", model="ismaelfaro/gpt2-poems.en") | |
pipe_image = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5") | |
pipe_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ar-en") | |
# Initialize text-to-speech models for Arabic and English | |
# Arabic: text-to-speech | |
synthesiser_arabic = synthesiser_arabic = pipeline("text-to-speech", model="facebook/mms-tts-ara") | |
# English: text-to-speech | |
synthesiser_english = pipeline("text-to-speech", model="microsoft/speecht5_tts") | |
embeddings_dataset_english = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") | |
speaker_embedding_english = torch.tensor(embeddings_dataset_english[7306]["xvector"]).unsqueeze(0) | |
# Generate poem based on language and convert it to audio and image | |
def generate_poem(selected_language, text): | |
if selected_language == "English": | |
poem = generate_poem_english(text) #retrun the generated poem from the generate_poem_english function | |
sampling_rate, audio_data = text_to_speech_english(poem) #return the audio from the text_to_speech_english function | |
image = generate_image_from_poem(text) #return the image from the generate_image_from_poem function | |
elif selected_language == "Arabic": | |
poem = generate_poem_arabic(text) #retrun the generated poem from the generate_poem_arabic function | |
sampling_rate, audio_data = text_to_speech_arabic(poem) #return the audio from the text_to_speech_arabic function | |
translated_text = translate_arabic_to_english(text) #return the translated poem from arabic to englsih, using translate_arabic_to_english function | |
image = generate_image_from_poem(translated_text) #return the image from the generate_image_from_poem function | |
return poem, (sampling_rate, audio_data), image | |
# Poem generation for Arabic | |
def generate_poem_arabic(text): | |
generated_text = pipe_ar(text, do_sample=True, max_length=96, top_k=50, top_p=1.0, temperature=1.0, num_return_sequences=1, | |
no_repeat_ngram_size = 3, return_full_text=True)[0]["generated_text"] | |
clean_text = generated_text.replace("-", "") #To get rid of the dashs generated by the model. | |
return clean_text | |
# Poem generation for English | |
def generate_poem_english(text): | |
generated_text = pipe_en(text, do_sample=True, max_length=50)[0]['generated_text'] | |
clean_text = generated_text.replace("-", "") # Remove dashes generated by the model | |
clean_text = clean_text.replace("\\n", " ") # Replace newlines with a space | |
return clean_text | |
def text_to_speech_arabic(text): | |
speech = synthesiser_arabic(text) | |
audio_data = speech["audio"][0] # Flatten to 1D | |
sampling_rate = speech["sampling_rate"] | |
return (sampling_rate, audio_data) | |
# Text-to-speech conversion for English | |
def text_to_speech_english(text): | |
speech = synthesiser_english(text, forward_params={"speaker_embeddings": speaker_embedding_english}) | |
audio_data = speech["audio"] | |
sampling_rate = speech["sampling_rate"] | |
return (sampling_rate, audio_data) | |
#Image Function | |
def generate_image_from_poem(poem_text): | |
image = pipe_image(poem_text).images[0] | |
return image | |
#Translation Function from Arabic to English | |
def translate_arabic_to_english(text): | |
translated_text = pipe_translator(text)[0]['translation_text'] | |
return translated_text | |
custom_css = """ | |
body { | |
background-color: #f4f4f9; | |
color: #333; | |
} | |
.gradio-container { | |
border-radius: 10px; | |
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); | |
background-color: #fff; | |
} | |
label { | |
color: #4A90E2; | |
font-weight: bold; | |
} | |
input[type="text"], | |
textarea { | |
border: 1px solid #4A90E2; | |
} | |
textarea { | |
height: 150px; | |
} | |
button { | |
background-color: #4A90E2; | |
color: #fff; | |
border-radius: 5px; | |
cursor: pointer; | |
} | |
button:hover { | |
background-color: #357ABD; | |
} | |
.dropdown { | |
border: 1px solid #4A90E2; | |
border-radius: 4px; | |
} | |
""" | |
#First parameter is for the dropdown menu, and the second parameter is for the starter of the poem | |
examples = [["English", "The night sky is filled with stars and dreams"]] | |
my_model = gr.Interface( | |
fn=generate_poem, #The primary function that will recives the inputs (language and the starter of the poem) | |
inputs=[ | |
gr.Dropdown(["English", "Arabic"], label="Select Language"), #Dropdown menu to select the language, either "English" or "Arabic" for the poem | |
gr.Textbox(label="Enter a sentence")], #Textbox where the user will input a sentence or phrase to generate the poem (starter of the peom) | |
outputs=[ | |
gr.Textbox(label="Generated Poem", lines=10), # Textbox to display the generated poem | |
gr.Audio(label="Generated Audio", type="numpy"), #Audio output for the generated poem | |
gr.Image(label="Generated Image")], #Display an image generated from the starter of the peom | |
examples=examples, #Predefined examples to guide the user how to use the interface | |
css=custom_css #Applying CSS Custeom | |
) | |
my_model.launch() |