PoetryGen / app.py
SarahMarzouq's picture
Update app.py
b7b153d verified
from transformers import pipeline
from datasets import load_dataset
import gradio as gr
import torch
from diffusers import DiffusionPipeline
pipe_ar = pipeline('text-generation', framework='pt', model='akhooli/ap2023', tokenizer='akhooli/ap2023')
pipe_en = pipeline("text-generation", model="ismaelfaro/gpt2-poems.en")
pipe_image = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
pipe_translator = pipeline("translation", model="Helsinki-NLP/opus-mt-ar-en")
# Initialize text-to-speech models for Arabic and English
# Arabic: text-to-speech
synthesiser_arabic = synthesiser_arabic = pipeline("text-to-speech", model="facebook/mms-tts-ara")
# English: text-to-speech
synthesiser_english = pipeline("text-to-speech", model="microsoft/speecht5_tts")
embeddings_dataset_english = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embedding_english = torch.tensor(embeddings_dataset_english[7306]["xvector"]).unsqueeze(0)
# Generate poem based on language and convert it to audio and image
def generate_poem(selected_language, text):
if selected_language == "English":
poem = generate_poem_english(text) #retrun the generated poem from the generate_poem_english function
sampling_rate, audio_data = text_to_speech_english(poem) #return the audio from the text_to_speech_english function
image = generate_image_from_poem(text) #return the image from the generate_image_from_poem function
elif selected_language == "Arabic":
poem = generate_poem_arabic(text) #retrun the generated poem from the generate_poem_arabic function
sampling_rate, audio_data = text_to_speech_arabic(poem) #return the audio from the text_to_speech_arabic function
translated_text = translate_arabic_to_english(text) #return the translated poem from arabic to englsih, using translate_arabic_to_english function
image = generate_image_from_poem(translated_text) #return the image from the generate_image_from_poem function
return poem, (sampling_rate, audio_data), image
# Poem generation for Arabic
def generate_poem_arabic(text):
generated_text = pipe_ar(text, do_sample=True, max_length=96, top_k=50, top_p=1.0, temperature=1.0, num_return_sequences=1,
no_repeat_ngram_size = 3, return_full_text=True)[0]["generated_text"]
clean_text = generated_text.replace("-", "") #To get rid of the dashs generated by the model.
return clean_text
# Poem generation for English
def generate_poem_english(text):
generated_text = pipe_en(text, do_sample=True, max_length=50)[0]['generated_text']
clean_text = generated_text.replace("-", "") # Remove dashes generated by the model
clean_text = clean_text.replace("\\n", " ") # Replace newlines with a space
return clean_text
def text_to_speech_arabic(text):
speech = synthesiser_arabic(text)
audio_data = speech["audio"][0] # Flatten to 1D
sampling_rate = speech["sampling_rate"]
return (sampling_rate, audio_data)
# Text-to-speech conversion for English
def text_to_speech_english(text):
speech = synthesiser_english(text, forward_params={"speaker_embeddings": speaker_embedding_english})
audio_data = speech["audio"]
sampling_rate = speech["sampling_rate"]
return (sampling_rate, audio_data)
#Image Function
def generate_image_from_poem(poem_text):
image = pipe_image(poem_text).images[0]
return image
#Translation Function from Arabic to English
def translate_arabic_to_english(text):
translated_text = pipe_translator(text)[0]['translation_text']
return translated_text
custom_css = """
body {
background-color: #f4f4f9;
color: #333;
}
.gradio-container {
border-radius: 10px;
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
background-color: #fff;
}
label {
color: #4A90E2;
font-weight: bold;
}
input[type="text"],
textarea {
border: 1px solid #4A90E2;
}
textarea {
height: 150px;
}
button {
background-color: #4A90E2;
color: #fff;
border-radius: 5px;
cursor: pointer;
}
button:hover {
background-color: #357ABD;
}
.dropdown {
border: 1px solid #4A90E2;
border-radius: 4px;
}
"""
#First parameter is for the dropdown menu, and the second parameter is for the starter of the poem
examples = [["English", "The night sky is filled with stars and dreams"]]
my_model = gr.Interface(
fn=generate_poem, #The primary function that will recives the inputs (language and the starter of the poem)
inputs=[
gr.Dropdown(["English", "Arabic"], label="Select Language"), #Dropdown menu to select the language, either "English" or "Arabic" for the poem
gr.Textbox(label="Enter a sentence")], #Textbox where the user will input a sentence or phrase to generate the poem (starter of the peom)
outputs=[
gr.Textbox(label="Generated Poem", lines=10), # Textbox to display the generated poem
gr.Audio(label="Generated Audio", type="numpy"), #Audio output for the generated poem
gr.Image(label="Generated Image")], #Display an image generated from the starter of the peom
examples=examples, #Predefined examples to guide the user how to use the interface
css=custom_css #Applying CSS Custeom
)
my_model.launch()