File size: 25,272 Bytes
165166b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a31b365
165166b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a31b365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165166b
 
 
 
 
a31b365
 
 
 
165166b
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
from fastapi import FastAPI, HTTPException, Query
from pydantic import BaseModel
import os
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import CSVLoader
from langchain_openai import ChatOpenAI
from langchain_groq import ChatGroq
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain.chains import create_retrieval_chain
from langchain_google_genai import ChatGoogleGenerativeAI
from dotenv import load_dotenv
from fastapi.responses import PlainTextResponse
from fastapi.middleware.cors import CORSMiddleware
import asyncio
import json
import re
# Load environment variables
load_dotenv()
os.environ["GOOGLE_API_KEY"] = os.getenv("GOOGLE_API_KEY")
os.environ["GROQ_API_KEY"] = os.getenv("GROQ_API_KEY")
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
key = os.getenv("GOOGLE_API_KEY")
# Define paths
DB_FAISS_PATH = "bgi/db_faiss"

# Initialize FastAPI app
app = FastAPI()
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],  # Add the React app's URL
    allow_credentials=True,
    allow_methods=["*"],  # Allow all HTTP methods
    allow_headers=["*"],  # Allow all headers
)
# Initialize variables
embeddings = None
db = None

# Load or create FAISS vector store
@app.on_event("startup")
def load_vector_store():
    global embeddings, db
    if os.path.exists(DB_FAISS_PATH):
        print("Loading existing FAISS vector store.")
        embeddings = HuggingFaceEmbeddings(model_name='BAAI/bge-small-en', model_kwargs={'device': 'cpu'})
        db = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)
        print("Vector store loaded.")
    else:
        print("Creating new FAISS vector store.")
        loader = CSVLoader(file_path="Final_Research_Dataset_2.csv", encoding="utf-8", csv_args={'delimiter': ','})
        data = loader.load()
        embeddings = HuggingFaceEmbeddings(model_name='BAAI/bge-small-en', model_kwargs={'device': 'cpu'})
        db = FAISS.from_documents(data, embeddings)
        db.save_local(DB_FAISS_PATH)


# Define request and response models
from typing import List, Optional

class FilterCriteria(BaseModel):
    impactFactor: float
    firstDecisionTime: int
    publisher: Optional[str]
    llmModel: str

class QueryRequest(BaseModel):
    abstract: str
    criteria: FilterCriteria

class Journal(BaseModel):
    id: int
    Name: str
    JIF: float
    Category: str
    Keywords: str
    Publisher: str
    Decision_Time: int

# Define the QueryResponse model with a list of journals
class QueryResponse(BaseModel):
    result: List[Journal]


@app.get("/", response_class=PlainTextResponse)
def read_root():
    return "Welcome to the Journal Recommender API!"
# Define models
@app.get("/models")
def get_models():
    return {"available_models": ["openai", "groq","mixtral","gemini-pro","faiss"]}

def fix_incomplete_json(raw_response):
    """
    Fixes incomplete JSON by adding missing braces or brackets.
    Returns a valid JSON string or None if not fixable.
    """
    # Ensure the response ends with a closing bracket if it's a list
    if raw_response.endswith("},"):
        raw_response = raw_response[:-1]  # Remove the last comma
    if raw_response.count("{") > raw_response.count("}"):
        raw_response += "}"
    if raw_response.count("[") > raw_response.count("]"):
        raw_response += "]"
    
    # Try to load the fixed response
    try:
        json_response = json.loads(raw_response)
        return json_response
    except json.JSONDecodeError as e:
        print(f"Error fixing JSON: {e}")
        return None


# Query endpoint
@app.post("/query", response_model=QueryResponse)
async def query(request: QueryRequest):
    global db
    if not db:
        raise HTTPException(status_code=500, detail="Vector store not loaded.")

    query_text = request.abstract
    model_choice = request.criteria.llmModel
    impact_factor = request.criteria.impactFactor
    preferred_publisher = request.criteria.publisher
    # Perform the query
    docs = db.similarity_search(query_text, k=5)
    context = "\n".join([doc.page_content for doc in docs])
    
    messages = [
        {
            "role": "system",
            "content": (
                "Give a strict comma-separated list of exactly 15 keywords from the following text. "
                "Give a strict comma-separated list of exactly 15 keywords from the following text. "
                "Do not include any bullet points, introductory text, or ending text. "
                "No introductory or ending text strictly"  # Added to ensure can be removed if results deteriorate
                "Do not say anything like 'Here are the keywords.' "
                "Only return the keywords, strictly comma-separated, without any additional words."
            ),
        },
        {"role": "user", "content": query_text},
    ]
    llm = ChatGroq(model="llama3-8b-8192", temperature=0)
    ai_msg = llm.invoke(messages)
    keywords = ai_msg.content.split("keywords extracted from the text:\n")[-1].strip()
    print("Keywords:", keywords)
    if model_choice == "openai":
        retriever = db.as_retriever()
        
        # Set up system prompt
        system_prompt = (
            f"You are a specialized Journal recommender that compares all journals in database to given research paper keywords and based on JIF and publisher gives result."
            f"From the provided context, recommend all journals that are suitable for research paper with {keywords} keywords."
            f"Ensure that you include **every** journal with a Journal Impact Factor (JIF) strictly greater than {impact_factor}, and the Journal must be only from any Publishers in list: {preferred_publisher}. And Pls show that jif as in Context database "
            f"Make sure to include both exact matches and related journals, and prioritize including **all relevant high-JIF journals without repetition**. "
            f"Present the results in a json format with the following information: Journal Name, Publisher, JIF, Decsion Time. "
            f"Ensure no introductory or ending texts are included. Give max 30 results"
            "Context: {context}"
        )

        prompt = ChatPromptTemplate.from_messages(
            [("system", system_prompt), ("user", "{input}")]
        )

        
        async def create_chain():
            client = ChatOpenAI(model="gpt-4o")
            return create_stuff_documents_chain(client, prompt)
        
        # Create the question-answer chain using async function
        question_answer_chain = await create_chain()
        rag_chain = create_retrieval_chain(retriever, question_answer_chain)

        # Ensure the vector dimensions match the FAISS index

        # Invoke the RAG chain
        answer = rag_chain.invoke(
            {"input": f"Keywords: {keywords}, Minimum JIF: {impact_factor},Publisher list: {preferred_publisher}"}
        )

        # Inspect the result structure
        result = []
        raw_response = answer['answer']
        cleaned_response = raw_response.strip('```json\n').strip('```').strip()

        # Parse the cleaned JSON response
        try:
            json_response = json.loads(cleaned_response)
            
            # Initialize an empty list to hold the journal objects
            result = []
            
            # Process the JSON data and create Journal objects
            for i, journal in enumerate(json_response):
                try:
                    journal_name = journal.get('Journal Name')
                    publisher = journal.get('Publisher')
                    jif = float(journal.get('JIF', 0))  # Ensure valid float
                    decision_time = journal.get('Decsion Time', 0)  # Default to 0 if not available

                    # Only include if JIF is greater than the minimum threshold
                    if jif > impact_factor:
                        result.append(
                            Journal(
                                id=i + 1,
                                Name=journal_name,
                                Publisher=publisher,
                                JIF=jif,
                                Category="",  # Set to empty if not available
                                Keywords=keywords,  # Use provided keywords
                                Decision_Time=decision_time,
                            )
                        )
                except Exception as e:
                    print(f"Error processing journal data: {e}")
            
        except json.JSONDecodeError as e:
            print(f"Error parsing JSON response: {e}")
            result = []

        # Return the result wrapped in a QueryResponse
        return QueryResponse(result=result)
    elif model_choice == "groq":
        retriever = db.as_retriever()
        
        # Set up system prompt
        system_prompt = (
            f"You are a specialized Journal recommender that compares all journals in database to given research paper keywords and based on JIF and publisher gives result."
            f"From the provided context, recommend all journals that are suitable for research paper with {keywords} keywords."
            f"Ensure that you include **every** journal with a Journal Impact Factor (JIF) strictly greater than {impact_factor}, and the Journal must be only from any Publishers in list: {preferred_publisher}. And Pls show that jif as in Context database "
            f"Make sure to include both exact matches and related journals, and prioritize including **all relevant high-JIF journals without repetition**. "
            f"Present the results in a json format with the following information: Journal Name, Publisher, JIF, Decsion Time. "
            f"Ensure no introductory or ending texts are included. Dont give more than 10 results"
            "Context: {context}"
        )



        prompt = ChatPromptTemplate.from_messages(
            [("system", system_prompt), ("user", "{input}")]
        )

        # Create the question-answer chain
        async def create_chain():
            client = ChatGroq(model="llama-3.2-3b-preview", temperature=0)
            return create_stuff_documents_chain(client, prompt)
        
        # Create the question-answer chain using async function
        question_answer_chain = await create_chain()
        rag_chain = create_retrieval_chain(retriever, question_answer_chain)

        # Ensure the vector dimensions match the FAISS index

        # Invoke the RAG chain
        answer = rag_chain.invoke(
            {"input": f"Keywords: {keywords}, Minimum JIF: {impact_factor},Publisher list: {preferred_publisher}"}
        )
        
        # Inspect the result structure
        result = []
        raw_response = answer['answer']
        
        cleaned_response = raw_response.strip('```json\n').strip('```').strip()

        # Parse the cleaned JSON response
        try:
            # Parse the cleaned response
            print("Cleaned Response:", cleaned_response)  # For debugging
            json_response = json.loads(cleaned_response)
            
            # Initialize an empty list to hold the journal objects
            result = []
            
            # Process the JSON data and create Journal objects
            for i, journal in enumerate(json_response["journals"]):  # Accessing the 'journals' key
                print("Journal entry:", journal)  # For debugging
                
                try:
                    if isinstance(journal, dict):  # Ensure journal is a dictionary
                        journal_name = journal.get('Journal Name')
                        publisher = journal.get('Publisher')
                        jif = float(journal.get('JIF', 0))  # Ensure valid float
                        decision_time = journal.get('Decision Time', 0)  # Default to 0 if not available

                        # Only include if JIF is greater than the minimum threshold
                        if jif > impact_factor:
                            result.append(
                                Journal(
                                    id=i + 1,
                                    Name=journal_name,
                                    Publisher=publisher,
                                    JIF=jif,
                                    Category="",  # Set to empty if not available
                                    Keywords=keywords,  # Use provided keywords
                                    Decision_Time=decision_time,
                                )
                            )
                    else:
                        print(f"Skipping invalid journal entry: {journal}")
                except Exception as e:
                    print(f"Error processing journal data: {e}")
            
        except json.JSONDecodeError as e:
            print(f"Error parsing JSON response: {e}")
            result = []

        # Return the result wrapped in a QueryResponse
        return QueryResponse(result=result)


    elif model_choice == "mixtral":
        retriever = db.as_retriever()
        
        # Set up system prompt
        system_prompt = (
            f"You are a specialized Journal recommender that compares all journals in database to given research paper keywords and based on JIF and publisher gives result."
            f"From the provided context, recommend all journals that are suitable for research paper with {keywords} keywords."
            f"Ensure that you include **every** journal with a Journal Impact Factor (JIF) strictly greater than {impact_factor}, and the Journal must be only from any Publishers in list: {preferred_publisher}. And Pls show that jif as in Context database "
            f"Make sure to include both exact matches and related journals, and prioritize including **all relevant high-JIF journals without repetition**. "
            f"Present the results in a json format with the following information: Journal Name, Publisher, JIF, Decsion Time. "
            f"Ensure no introductory or ending texts are included. Dont give more than 10 results"
            "Context: {context}"
        )

        prompt = ChatPromptTemplate.from_messages(
            [("system", system_prompt), ("user", "{input}")]
        )

        # Create the question-answer chain
        
        
        async def create_chain():
            client = ChatGroq(model="mixtral-8x7b-32768",temperature=0)
            return create_stuff_documents_chain(client, prompt)
        
        # Create the question-answer chain using async function
        question_answer_chain = await create_chain()
        rag_chain = create_retrieval_chain(retriever, question_answer_chain)

        # Ensure the vector dimensions match the FAISS index

        # Invoke the RAG chain
        answer = rag_chain.invoke(
            {"input": f"Keywords: {keywords}, Minimum JIF: {impact_factor},Publisher list: {preferred_publisher}"}
        )

        # Inspect the result structure
        result = []
        raw_response = answer['answer']
        
        cleaned_response = raw_response.strip('```json\n').strip('```').strip()

        # Parse the cleaned JSON response
        try:
            # Parse the cleaned response
            print("Cleaned Response:", cleaned_response)  # For debugging
            json_response = json.loads(cleaned_response)
            
            # Initialize an empty list to hold the journal objects
            result = []
            
            # Process the JSON data and create Journal objects
            for i, journal in enumerate(json_response):  # Iterate directly over the list
                print("Journal entry:", journal)  # For debugging
                
                try:
                    if isinstance(journal, dict):  # Ensure journal is a dictionary
                        journal_name = journal.get('Journal Name')
                        publisher = journal.get('Publisher')
                        jif = float(journal.get('JIF', 0))  # Ensure valid float
                        decision_time = journal.get('Decsion Time', 0)  # Default to 0 if not available

                        # Only include if JIF is greater than the minimum threshold
                        if jif > impact_factor:
                            result.append(
                                Journal(
                                    id=i + 1,
                                    Name=journal_name,
                                    Publisher=publisher,
                                    JIF=jif,
                                    Category="",  # Set to empty if not available
                                    Keywords=keywords,  # Use provided keywords
                                    Decision_Time=decision_time,
                                )
                            )
                    else:
                        print(f"Skipping invalid journal entry: {journal}")
                except Exception as e:
                    print(f"Error processing journal data: {e}")
            
        except json.JSONDecodeError as e:
            print(f"Error parsing JSON response: {e}")
            result = []

        # Return the result wrapped in a QueryResponse
        return QueryResponse(result=result)

    elif model_choice == "gemini-pro":
        print("Using Gemini-Pro model")
        retriever = db.as_retriever()
        
        # Set up system prompt
        system_prompt = (
            f"You are a specialized Journal recommender that compares all journals in database to given research paper keywords and based on JIF and publisher gives result."
            f"From the provided context, recommend all journals that are suitable for research paper with {keywords} keywords."
            f"Ensure that you include **every** journal with a Journal Impact Factor (JIF) strictly greater than {impact_factor}, and the Journal must be only from any Publishers in list: {preferred_publisher}. And Pls show that jif as in Context database "
            f"Make sure to include both exact matches and related journals, and prioritize including **all relevant high-JIF journals without repetition**. "
            f"Present the results in a json format with the following information: Journal Name, Publisher, JIF, Decsion Time. "
            f"Ensure no introductory or ending texts are included."
            "Context: {context}"
        )

        prompt = ChatPromptTemplate.from_messages(
            [("system", system_prompt), ("user", "{input}")]
        )

        async def create_chain():
            client = ChatGoogleGenerativeAI(
                model="gemini-pro",
                google_api_key=key,
                convert_system_message_to_human=True,
            )
            return create_stuff_documents_chain(client, prompt)
        
        # Create the question-answer chain using async function
        question_answer_chain = await create_chain()
        rag_chain = create_retrieval_chain(retriever, question_answer_chain)
        

        # Ensure the vector dimensions match the FAISS index

        # Invoke the RAG chain
        answer = rag_chain.invoke(
            {"input": f"Keywords: {keywords}, Minimum JIF: {impact_factor},Publisher list: {preferred_publisher}"}
        )
       
        # Inspect the result structure
        result = []
        raw_response = answer['answer']
        cleaned_response = raw_response.strip('```json\n').strip('```').strip()

        # Parse the cleaned JSON response
        try:
            json_response = json.loads(cleaned_response)
            
            # Initialize an empty list to hold the journal objects
            result = []
            
            # Process the JSON data and create Journal objects
            for i, journal in enumerate(json_response):
                try:
                    journal_name = journal.get('Journal Name')
                    publisher = journal.get('Publisher')
                    jif = float(journal.get('JIF', 0))  # Ensure valid float
                    decision_time = journal.get('Decsion Time', 0)  # Default to 0 if not available

                    # Only include if JIF is greater than the minimum threshold
                    if jif > impact_factor:
                        result.append(
                            Journal(
                                id=i + 1,
                                Name=journal_name,
                                Publisher=publisher,
                                JIF=jif,
                                Category="",  # Set to empty if not available
                                Keywords=keywords,  # Use provided keywords
                                Decision_Time=decision_time,
                            )
                        )
                except Exception as e:
                    print(f"Error processing journal data: {e}")
            
        except json.JSONDecodeError as e:
            print(f"Error parsing JSON response: {e}")
            result = []

        # Return the result wrapped in a QueryResponse
        return QueryResponse(result=result)
    elif model_choice == "faiss":
        embeddings = HuggingFaceEmbeddings(
            model_name="BAAI/bge-small-en", model_kwargs={"device": "cpu"}
        )
        jif = impact_factor  # Minimum JIF value for filtering
        publisher = preferred_publisher.split() if preferred_publisher else []  # Preferred publisher list or "no preference"

        # Load the FAISS index from local storage
        db1 = FAISS.load_local(DB_FAISS_PATH, embeddings, allow_dangerous_deserialization=True)

        # Embed the query
        query_embedding = embeddings.embed_query(keywords)

        # Perform similarity search with FAISS (retrieve top 20 results)
        results = db1.similarity_search_by_vector(query_embedding, k=20)

        # Prepare the context for processing results
        context = "\n\n".join(doc.page_content for doc in results)

        # Apply filters for JIF and publisher
        min_jif = jif
        valid_publishers = publisher if publisher != ["no preference"] else None

        # Split the output based on each entry starting with 'Name: '
        entries = re.split(r"\n(?=Name:)", context.strip())

        # Initialize an empty list to hold the Journal models
        journal_list = []

        # Process each entry
        for entry in entries:
            # Use regex to capture different fields
            name = re.search(r"Name: (.+)", entry)
            jif_match = re.search(r"JIF: (.+)", entry)
            category = re.search(r"Category: (.+)", entry)
            keywords_match = re.search(r"Keywords: (.+)", entry)
            publisher_match = re.search(r"Publisher: (.+)", entry)
            first_decision_match = re.search(r"Decsion Time: (.+)", entry)

            if  jif_match :
                # Extract values from regex matches
                name_value = name.group(1).strip()
                jif_value = float(jif_match.group(1).strip())
                category_value = category.group(1).strip()
                keywords_value = keywords_match.group(1).strip()
                publisher_value = publisher_match.group(1).strip()
                decision_time = first_decision_match.group(1).strip()
                # Filter based on JIF and publisher preferences
                if jif_value >= min_jif :
                    # Create the Journal model instance
                    if publisher and (publisher_value in publisher):
                        print("inside pubisher match")
                        journal = Journal(
                            id=len(journal_list) + 1,
                            Name=name_value,
                            JIF=jif_value,
                            Category=category_value,
                            Keywords=keywords_value,
                            Publisher=publisher_value,
                            Decision_Time=decision_time
                        )
                        journal_list.append(journal)
                    elif not publisher:
                        journal = Journal(
                        id=len(journal_list) + 1,
                        Name=name_value,
                        JIF=jif_value,
                        Category=category_value,
                        Keywords=keywords_value,
                        Publisher=publisher_value,
                        Decision_Time=decision_time
                        )
                        journal_list.append(journal)
                    

        
        # Return the list of journals as a response or process it further
        return {"result": [journal.dict() for journal in journal_list]}
    else:
        raise HTTPException(status_code=400, detail="Invalid model choice.")

    # Generate response using LLM
    response = llm.predict(f"Context: {context}\n\nQuestion: {query_text}")
    return QueryResponse(result=response)

# Run the app with Uvicorn
# Command: uvicorn app:app --reload