File size: 6,053 Bytes
8bed0a4
 
 
 
 
 
 
 
 
89d59ac
8bed0a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348ae5d
 
 
 
 
 
 
8bed0a4
348ae5d
8bed0a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
569e6ce
8bed0a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac71e36
 
348ae5d
ac71e36
8bed0a4
 
 
 
 
 
 
 
 
 
 
8956930
8bed0a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348ae5d
8bed0a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac71e36
8bed0a4
348ae5d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import os
import re

import gradio as gr
from text_generation import Client

from dialogues import DialogueTemplate

model2endpoint = {
    "starchat-beta": os.environ.get("API_URL", None),
}
model_names = list(model2endpoint.keys())

def get_total_inputs(inputs, chatbot, preprompt, user_name, assistant_name, sep):
    past = []
    for data in chatbot:
        user_data, model_data = data

        if not user_data.startswith(user_name):
            user_data = user_name + user_data
        if not model_data.startswith(sep + assistant_name):
            model_data = sep + assistant_name + model_data

        past.append(user_data + model_data.rstrip() + sep)

    if not inputs.startswith(user_name):
        inputs = user_name + inputs

    total_inputs = preprompt + "".join(past) + inputs + sep + assistant_name.rstrip()

    return total_inputs


def wrap_html_code(text):
    pattern = r"<.*?>"
    matches = re.findall(pattern, text)
    if len(matches) > 0:
        return f"```{text}```"
    else:
        return text


def has_no_history(chatbot, history):
    return not chatbot and not history


def generate(
    user_message,
    chatbot,
    history,
):
    system_message = "Below is a conversation between a human user and a helpful AI coding assistant."
    temperature = 0.2
    top_k = 50
    top_p = 0.95
    max_new_tokens = 1024
    repetition_penalty = 1.2

    client = Client(
        model2endpoint["starchat-beta"]
    )
    # Don't return meaningless message when the input is empty
    if not user_message:
        print("Empty input")

    history.append(user_message)

    past_messages = []
    for data in chatbot:
        user_data, model_data = data

        past_messages.extend(
            [{"role": "user", "content": user_data}, {"role": "assistant", "content": model_data.rstrip()}]
        )

    if len(past_messages) < 1:
        dialogue_template = DialogueTemplate(
            system=system_message, messages=[{"role": "user", "content": user_message}]
        )
        prompt = dialogue_template.get_inference_prompt()
    else:
        dialogue_template = DialogueTemplate(
            system=system_message, messages=past_messages + [{"role": "user", "content": user_message}]
        )
        prompt = dialogue_template.get_inference_prompt()

    generate_kwargs = {
        "temperature": temperature,
        "top_k": top_k,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens,
    }

    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        truncate=1000,
        seed=42,
        stop_sequences=["<|end|>"],
    )

    stream = client.generate_stream(
        prompt,
        **generate_kwargs,
    )

    output = ""
    for idx, response in enumerate(stream):
        if response.token.special:
            continue
        output += response.token.text
        if idx == 0:
            history.append(" " + output)
        else:
            history[-1] = output

        chat = [
            (wrap_html_code(history[i].strip()), wrap_html_code(history[i + 1].strip()))
            for i in range(0, len(history) - 1, 2)
        ]

        # chat = [(history[i].strip(), history[i + 1].strip()) for i in range(0, len(history) - 1, 2)]

        yield chat, history, user_message, ""

    return chat, history, user_message, ""


examples = [
    "How can I write a Python function to generate the nth Fibonacci number?",
    "How do I get the current date using shell commands? Explain how it works.",
    "What's the meaning of life?",
    "Write a function in Javascript to reverse words in a given string.",
    "Give the following data {'Name':['Tom', 'Brad', 'Kyle', 'Jerry'], 'Age':[20, 21, 19, 18], 'Height' : [6.1, 5.9, 6.0, 6.1]}. Can you plot one graph with two subplots as columns. The first is a bar graph showing the height of each person. The second is a bargraph showing the age of each person? Draw the graph in seaborn talk mode.",
    "Create a regex to extract dates from logs",
    "How to decode JSON into a typescript object",
    "Write a list into a jsonlines file and save locally",
]


def clear_chat():
    return [], []


def process_example(args):
    for [x, y] in generate(args):
        pass
    return [x, y]


title = """<h2 align="center">⭐ StarChat Saturdays 💬</h2>
<h4 align="center">Asistente de IA para estudiantes de Inteligencia Artificial</h4>
"""
info = """<h5 align="center">¡Tu privacidad es nuestra prioridad! Toda la información compartida en esta conversación se elimina automáticamente una vez que salgas del chat.</h5>"""
custom_css = """
#banner-image {
    display: block;
    margin-left: auto;
    margin-right: auto;
}
#chat-message {
    font-size: 14px;
    min-height: 300px;
}
"""

with gr.Blocks(analytics_enabled=False, css=custom_css) as demo:
    gr.HTML(title)

    with gr.Row():
        with gr.Box():
            output = gr.Markdown()
            chatbot = gr.Chatbot(elem_id="chat-message", label="Chat")

    with gr.Row():
        with gr.Column(scale=3):
            user_message = gr.Textbox(placeholder="Enter your message here", show_label=False, elem_id="q-input")
            with gr.Row():
                send_button = gr.Button("Send", elem_id="send-btn", visible=True)

    history = gr.State([])

    last_user_message = gr.State("")

    user_message.submit(
        generate,
        inputs=[
            user_message,
            chatbot,
            history,
        ],
        outputs=[chatbot, history, last_user_message, user_message],
    )

    send_button.click(
        generate,
        inputs=[
            user_message,
            chatbot,
            history,
        ],
        outputs=[chatbot, history, last_user_message, user_message],
    )
    gr.HTML(info)

demo.queue(concurrency_count=16).launch()