Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Load the YOLOv5 model
|
7 |
+
model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)
|
8 |
+
|
9 |
+
# Function to run inference on an image
|
10 |
+
def run_inference(image):
|
11 |
+
# Convert the image from PIL format to a format compatible with OpenCV
|
12 |
+
image = np.array(image)
|
13 |
+
|
14 |
+
# Run YOLOv5 inference
|
15 |
+
results = model(image)
|
16 |
+
|
17 |
+
# Convert the annotated image from BGR to RGB for display
|
18 |
+
annotated_image = results.render()[0]
|
19 |
+
annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB)
|
20 |
+
|
21 |
+
return annotated_image
|
22 |
+
|
23 |
+
# Create the Gradio interface
|
24 |
+
interface = gr.Interface(
|
25 |
+
fn=run_inference,
|
26 |
+
inputs=gr.Image(type="pil"),
|
27 |
+
outputs=gr.Image(type="pil"),
|
28 |
+
title="YOLOv5 Object Detection",
|
29 |
+
description="Upload an image to run YOLOv5 object detection and see the results."
|
30 |
+
)
|
31 |
+
|
32 |
+
# Launch the app
|
33 |
+
interface.launch()
|