Spaces:
Running
Running
File size: 5,471 Bytes
bc1817b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os
import time
from typing import Dict, List, Optional, TypeAlias
import gradio as gr
import torch
import weave
from transformers import pipeline
from papersai.utils import load_paper_as_context
os.environ["TOKENIZERS_PARALLELISM"] = "false"
HistoryType: TypeAlias = List[Dict[str, str]]
# Initialize the LLM and Weave client
client = weave.init("papersai")
checkpoint: str = "HuggingFaceTB/SmolLM2-135M-Instruct"
pipe = pipeline(
model=checkpoint,
torch_dtype=torch.bfloat16,
device_map="auto",
)
class ChatState:
"""Utility class to store context and last response"""
def __init__(self):
self.context = None
self.last_response = None
def record_feedback(x: gr.LikeData) -> None:
"""
Logs user feedback on the assistant's response in the form of a
like/dislike reaction.
Reference:
* https://weave-docs.wandb.ai/guides/tracking/feedback
Args:
x (gr.LikeData): User feedback data
Returns:
None
"""
call = state.last_response
# Remove any existing feedback before adding new feedback
for existing_feedback in list(call.feedback):
call.feedback.purge(existing_feedback.id)
if x.liked:
call.feedback.add_reaction("π")
else:
call.feedback.add_reaction("π")
@weave.op()
def invoke(history: HistoryType):
"""
Simple wrapper around llm inference wrapped in a weave op
Args:
history (HistoryType): Chat history
Returns:
BaseMessage: Response from the model
"""
input_text = pipe.tokenizer.apply_chat_template(
history,
tokenize=False,
)
response = pipe(input_text, do_sample=True, top_p=0.95, max_new_tokens=100)[0][
"generated_text"
]
response = response.split("\nassistant\n")[-1]
return response
def update_state(history: HistoryType, message: Optional[Dict[str, str]]):
"""
Update history and app state with the latest user input.
Args:
history (HistoryType): Chat history
message (Optional[Dict[str, str]]): User input message
Returns:
Tuple[HistoryType, gr.MultimodalTextbox]: Updated history and chat input
"""
if message is None:
return history, gr.MultimodalTextbox(value=None, interactive=True)
# Initialize history if None
if history is None:
history = []
# Handle file uploads without adding to visible history
if isinstance(message, dict) and "files" in message:
for file_path in message["files"]:
try:
text = load_paper_as_context(file_path=file_path)
doc_context = [x.get_content() for x in text]
state.context = " ".join(doc_context)[
: pipe.model.config.max_position_embeddings
]
history.append(
{"role": "system", "content": f"Context: {state.context}\n"}
)
except Exception as e:
history.append(
{"role": "assistant", "content": f"Error loading file: {str(e)}"}
)
# Handle text input
if isinstance(message, dict) and message.get("text"):
history.append({"role": "user", "content": message["text"]})
return history, gr.MultimodalTextbox(value=None, interactive=True)
def bot(history: HistoryType):
"""
Generate response from the LLM and stream it back to the user.
Args:
history (HistoryType): Chat history
Yields:
response from the LLM
"""
if not history:
return history
try:
# Get response from LLM
response, call = invoke.call(history)
state.last_response = call
# Add empty assistant message
history.append({"role": "assistant", "content": ""})
# Stream the response
for character in response:
history[-1]["content"] += character
time.sleep(0.02)
yield history
except Exception as e:
history.append({"role": "assistant", "content": f"Error: {str(e)}"})
yield history
def create_interface():
with gr.Blocks() as demo:
global state
state = ChatState()
gr.Markdown(
"""
<a href="https://github.com/SauravMaheshkar/papersai">
<div align="center"><h1>papers.ai</h1></div>
</a>
""",
)
chatbot = gr.Chatbot(
show_label=False,
height=600,
type="messages",
show_copy_all_button=True,
placeholder="Upload a research paper and ask questions!!",
)
chat_input = gr.MultimodalTextbox(
interactive=True,
file_count="single",
placeholder="Upload a document or type your message...",
show_label=False,
)
chat_msg = chat_input.submit(
fn=update_state,
inputs=[chatbot, chat_input],
outputs=[chatbot, chat_input],
)
bot_msg = chat_msg.then( # noqa: F841
fn=bot, inputs=[chatbot], outputs=chatbot, api_name="bot_response"
)
chatbot.like(
fn=record_feedback,
inputs=None,
outputs=None,
like_user_message=True,
)
return demo
def main():
demo = create_interface()
demo.launch(share=False)
if __name__ == "__main__":
main()
|