Scalino84 commited on
Commit
6455ecf
·
1 Parent(s): 1dc9513

Add application file

Browse files
Files changed (1) hide show
  1. app.py +73 -0
app.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from diffusers import StableDiffusionPipeline
3
+ import torch
4
+ from huggingface_hub import HfFolder
5
+
6
+ def generate_image(prompt, guidance_scale, num_steps, lora_scale):
7
+ # Lade das Base Model
8
+ pipe = StableDiffusionPipeline.from_pretrained(
9
+ "runwayml/stable-diffusion-v1-5",
10
+ torch_dtype=torch.float16
11
+ ).to("cuda")
12
+
13
+ # Lade dein LoRA
14
+ pipe.load_lora_weights(
15
+ "Scalino84/my-flux-face-v2",
16
+ weight_name="flux_train_replicate.safetensors"
17
+ )
18
+
19
+ # Generiere das Bild
20
+ image = pipe(
21
+ prompt=prompt,
22
+ num_inference_steps=num_steps,
23
+ guidance_scale=guidance_scale,
24
+ cross_attention_kwargs={"scale": lora_scale}
25
+ ).images[0]
26
+
27
+ return image
28
+
29
+ # Erstelle das Gradio Interface
30
+ with gr.Blocks() as demo:
31
+ gr.Markdown("# Flux Face Generator")
32
+
33
+ with gr.Row():
34
+ with gr.Column():
35
+ prompt = gr.Textbox(
36
+ label="Prompt",
37
+ value="a photo of xyz person, professional headshot",
38
+ lines=3
39
+ )
40
+ guidance = gr.Slider(
41
+ label="Guidance Scale",
42
+ minimum=1,
43
+ maximum=20,
44
+ value=7.5,
45
+ step=0.5
46
+ )
47
+ steps = gr.Slider(
48
+ label="Inference Steps",
49
+ minimum=20,
50
+ maximum=100,
51
+ value=30,
52
+ step=1
53
+ )
54
+ lora_scale = gr.Slider(
55
+ label="LoRA Scale",
56
+ minimum=0.1,
57
+ maximum=1.0,
58
+ value=0.8,
59
+ step=0.1
60
+ )
61
+ generate = gr.Button("Generate Image")
62
+
63
+ with gr.Column():
64
+ output = gr.Image(label="Generated Image")
65
+
66
+ generate.click(
67
+ fn=generate_image,
68
+ inputs=[prompt, guidance, steps, lora_scale],
69
+ outputs=output
70
+ )
71
+
72
+ demo.launch()
73
+