import gradio as gr from diffusers import StableDiffusionPipeline import torch from huggingface_hub import HfFolder def generate_image(prompt, guidance_scale, num_steps, lora_scale): # Lade das Base Model pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 ).to("cuda") # Lade dein LoRA pipe.load_lora_weights( "Scalino84/my-flux-face-v2", weight_name="flux_train_replicate.safetensors" ) # Generiere das Bild image = pipe( prompt=prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale, cross_attention_kwargs={"scale": lora_scale} ).images[0] return image # Erstelle das Gradio Interface with gr.Blocks() as demo: gr.Markdown("# Flux Face Generator") with gr.Row(): with gr.Column(): prompt = gr.Textbox( label="Prompt", value="a photo of xyz person, professional headshot", lines=3 ) guidance = gr.Slider( label="Guidance Scale", minimum=1, maximum=20, value=7.5, step=0.5 ) steps = gr.Slider( label="Inference Steps", minimum=20, maximum=100, value=30, step=1 ) lora_scale = gr.Slider( label="LoRA Scale", minimum=0.1, maximum=1.0, value=0.8, step=0.1 ) generate = gr.Button("Generate Image") with gr.Column(): output = gr.Image(label="Generated Image") generate.click( fn=generate_image, inputs=[prompt, guidance, steps, lora_scale], outputs=output ) demo.launch()