Spaces:
Runtime error
Runtime error
import string | |
import librosa | |
import numpy as np | |
from typing import List | |
def stretch(x: np.ndarray, factor: float, nfft: int = 2048) -> np.ndarray: | |
''' | |
@author: Gagandeep Singh, 29 Oct, 2018 | |
https://github.com/gaganbahga/time_stretch | |
stretch an audio sequence by a factor using FFT of size nfft converting to frequency domain | |
:param x: np.ndarray, audio array in PCM float32 format | |
:param factor: float, stretching or shrinking factor, depending on if its > or < 1 respectively | |
:return: np.ndarray, time stretched audio | |
''' | |
stft = librosa.core.stft(x, n_fft=nfft).transpose() # i prefer time-major fashion, so transpose | |
stft_rows = stft.shape[0] | |
stft_cols = stft.shape[1] | |
times = np.arange(0, stft.shape[0], factor) # times at which new FFT to be calculated | |
hop = nfft/4 # frame shift | |
stft_new = np.zeros((len(times), stft_cols), dtype=np.complex_) | |
phase_adv = (2 * np.pi * hop * np.arange(0, stft_cols))/ nfft | |
phase = np.angle(stft[0]) | |
stft = np.concatenate( (stft, np.zeros((1, stft_cols))), axis=0) | |
for i, time in enumerate(times): | |
left_frame = int(np.floor(time)) | |
local_frames = stft[[left_frame, left_frame + 1], :] | |
right_wt = time - np.floor(time) # weight on right frame out of 2 | |
local_mag = (1 - right_wt) * np.absolute(local_frames[0, :]) + right_wt * np.absolute(local_frames[1, :]) | |
local_dphi = np.angle(local_frames[1, :]) - np.angle(local_frames[0, :]) - phase_adv | |
local_dphi = local_dphi - 2 * np.pi * np.floor(local_dphi/(2 * np.pi)) | |
stft_new[i, :] = local_mag * np.exp(phase*1j) | |
phase += local_dphi + phase_adv | |
return librosa.core.istft(stft_new.transpose()) | |
def meow_stretch( | |
x: np.ndarray, character_len: int, | |
init_factor: float = 0.3, add_factor: float = 0.2, | |
power_factor: float = 0.8, nfft: int = 2048 | |
) -> np.ndarray: | |
''' | |
Stretch the meows based on word length, with a reducing power to prevent incredibly long meows | |
''' | |
factor = init_factor + (add_factor * character_len) ** power_factor | |
return stretch(x, 1/factor, nfft=nfft) | |
def get_word_lengths(text_input: str) -> List[int]: | |
text_input = text_input.translate(str.maketrans('', '', string.punctuation)) | |
word_list = text_input.split() | |
return [len(word) for word in word_list] | |