File size: 53,406 Bytes
d3c19b3
 
 
 
 
 
 
 
 
 
 
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdbbfdb
8889bbb
 
 
bdbbfdb
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3c19b3
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43147aa
 
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
bdbbfdb
 
8889bbb
 
 
 
 
d3c19b3
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43147aa
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
bdbbfdb
 
8889bbb
 
 
 
 
 
d3c19b3
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43147aa
 
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
bdbbfdb
 
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
try:
    import spaces
    def maybe_spaces_gpu(fn):
        fn = spaces.GPU(fn)
        return fn
except ModuleNotFoundError:
    print(f'Cannot import hf `spaces` with `import spaces`.')
    def maybe_spaces_gpu(fn):
        return fn
    

import os
from gradio.themes import ThemeClass as Theme
import numpy as np
import argparse
import gradio as gr
from typing import Any, Iterator
from typing import Iterator, List, Optional, Tuple
import filelock
import glob
import json
import time
from gradio.routes import Request
from gradio.utils import SyncToAsyncIterator, async_iteration
from gradio.helpers import special_args
import anyio
from typing import AsyncGenerator, Callable, Literal, Union, cast, Generator

from gradio_client.documentation import document, set_documentation_group
from gradio.components import Button, Component
from gradio.events import Dependency, EventListenerMethod
from typing import List, Optional, Union, Dict, Tuple
from tqdm.auto import tqdm
from huggingface_hub import snapshot_download
from gradio.components.base import Component

from .base_demo import register_demo, get_demo_class, BaseDemo


from .chat_interface import (
    SYSTEM_PROMPT,
    MODEL_NAME,
    MAX_TOKENS,
    TEMPERATURE,
    CHAT_EXAMPLES,
    gradio_history_to_openai_conversations,
    gradio_history_to_conversation_prompt,
    DATETIME_FORMAT,
    get_datetime_string,
    chat_response_stream_multiturn_engine,
    ChatInterfaceDemo,
    format_conversation,
    CustomizedChatInterface,
)


from gradio.events import Events

import inspect
from typing import AsyncGenerator, Callable, Literal, Union, cast

import anyio
from gradio_client import utils as client_utils
from gradio_client.documentation import document

from gradio.blocks import Blocks
from gradio.components import (
    Button,
    Chatbot,
    Component,
    Markdown,
    State,
    Textbox,
    get_component_instance,
)
from gradio.events import Dependency, on
from gradio.helpers import create_examples as Examples  # noqa: N812
from gradio.helpers import special_args
from gradio.layouts import Accordion, Group, Row
from gradio.routes import Request
from gradio.themes import ThemeClass as Theme
from gradio.utils import SyncToAsyncIterator, async_iteration

from ..globals import MODEL_ENGINE

from ..configs import (
    USE_PANEL,
    IMAGE_TOKEN,
    IMAGE_TOKEN_INTERACTIVE,
    CHATBOT_HEIGHT,
)



CSS = """
.message-fit {
    min-width: 20em; 
    width: fit-content !important;
}

.message.svelte-1lcyrx4.svelte-1lcyrx4.svelte-1lcyrx4 {
    padding-top: 1em;
    padding-bottom: 1em;
}
"""


DOC_TEMPLATE = """###
{content}
###

"""

DOC_INSTRUCTION = """Answer the following query exclusively based on the information provided in the document above. \
If the information is not found, please say so instead of making up facts! Remember to answer the question in the same language as the user query!
"""


def undo_history(history):
    if len(history) == 0:
        return history
    if history[-1][-1] is not None:
        if history[-1][0] is not None:
            history[-1][-1] = None
        else:
            history = history[:-1]
    else:
        history = history[:-1]
    return history


def undo_history_until_last_assistant_turn(history):
    history = undo_history(history)
    while len(history) > 0 and history[-1][-1] is None:
        history = undo_history(history)
    return history, history


class MultiModalChatInterface(CustomizedChatInterface):
    def __init__(
        self,
        fn: Callable,
        *,
        chatbot: Chatbot | None = None,
        textbox: Textbox | None = None,
        additional_inputs: str | Component | list[str | Component] | None = None,
        additional_inputs_accordion_name: str | None = None,
        additional_inputs_accordion: str | Accordion | None = None,
        add_multimodal_fn: Callable | None = None,
        render_additional_inputs_fn: Callable | None = None,
        examples: list[str] | None = None,
        cache_examples: bool | None = None,
        title: str | None = None,
        description: str | None = None,
        theme: Theme | str | None = None,
        css: str | None = None,
        js: str | None = None,
        head: str | None = None,
        analytics_enabled: bool | None = None,
        submit_btn: str | None | Button = "Submit",
        stop_btn: str | None | Button = "Stop",
        retry_btn: str | None | Button = "🔄  Retry",
        undo_btn: str | None | Button = "↩️ Undo",
        clear_btn: str | None | Button = "🗑️  Clear",
        autofocus: bool = True,
        concurrency_limit: int | None | Literal["default"] = "default",
        fill_height: bool = True,
    ):
        """
        Parameters:
            fn: The function to wrap the chat interface around. Should accept two parameters: a string input message and list of two-element lists of the form [[user_message, bot_message], ...] representing the chat history, and return a string response. See the Chatbot documentation for more information on the chat history format.
            chatbot: An instance of the gr.Chatbot component to use for the chat interface, if you would like to customize the chatbot properties. If not provided, a default gr.Chatbot component will be created.
            textbox: An instance of the gr.Textbox component to use for the chat interface, if you would like to customize the textbox properties. If not provided, a default gr.Textbox component will be created.
            additional_inputs: An instance or list of instances of gradio components (or their string shortcuts) to use as additional inputs to the chatbot. If components are not already rendered in a surrounding Blocks, then the components will be displayed under the chatbot, in an accordion.
            additional_inputs_accordion_name: Deprecated. Will be removed in a future version of Gradio. Use the `additional_inputs_accordion` parameter instead.
            additional_inputs_accordion: If a string is provided, this is the label of the `gr.Accordion` to use to contain additional inputs. A `gr.Accordion` object can be provided as well to configure other properties of the container holding the additional inputs. Defaults to a `gr.Accordion(label="Additional Inputs", open=False)`. This parameter is only used if `additional_inputs` is provided.
            examples: Sample inputs for the function; if provided, appear below the chatbot and can be clicked to populate the chatbot input.
            cache_examples: If True, caches examples in the server for fast runtime in examples. The default option in HuggingFace Spaces is True. The default option elsewhere is False.
            title: a title for the interface; if provided, appears above chatbot in large font. Also used as the tab title when opened in a browser window.
            description: a description for the interface; if provided, appears above the chatbot and beneath the title in regular font. Accepts Markdown and HTML content.
            theme: Theme to use, loaded from gradio.themes.
            css: Custom css as a string or path to a css file. This css will be included in the demo webpage.
            js: Custom js or path to js file to run when demo is first loaded. This javascript will be included in the demo webpage.
            head: Custom html to insert into the head of the demo webpage. This can be used to add custom meta tags, scripts, stylesheets, etc. to the page.
            analytics_enabled: Whether to allow basic telemetry. If None, will use GRADIO_ANALYTICS_ENABLED environment variable if defined, or default to True.
            submit_btn: Text to display on the submit button. If None, no button will be displayed. If a Button object, that button will be used.
            stop_btn: Text to display on the stop button, which replaces the submit_btn when the submit_btn or retry_btn is clicked and response is streaming. Clicking on the stop_btn will halt the chatbot response. If set to None, stop button functionality does not appear in the chatbot. If a Button object, that button will be used as the stop button.
            retry_btn: Text to display on the retry button. If None, no button will be displayed. If a Button object, that button will be used.
            undo_btn: Text to display on the delete last button. If None, no button will be displayed. If a Button object, that button will be used.
            clear_btn: Text to display on the clear button. If None, no button will be displayed. If a Button object, that button will be used.
            autofocus: If True, autofocuses to the textbox when the page loads.
            concurrency_limit: If set, this is the maximum number of chatbot submissions that can be running simultaneously. Can be set to None to mean no limit (any number of chatbot submissions can be running simultaneously). Set to "default" to use the default concurrency limit (defined by the `default_concurrency_limit` parameter in `.queue()`, which is 1 by default).
            fill_height: If True, the chat interface will expand to the height of window.
        """
        try:
            super(gr.ChatInterface, self).__init__(
                analytics_enabled=analytics_enabled,
                mode="chat_interface",
                css=css,
                title=title or "Gradio",
                theme=theme,
                js=js,
                head=head,
                fill_height=fill_height,
            )
        except Exception as e:
            # Handle old gradio versions without fill_height
            super(gr.ChatInterface, self).__init__(
                analytics_enabled=analytics_enabled,
                mode="chat_interface",
                css=css,
                title=title or "Gradio",
                theme=theme,
                js=js,
                head=head,
                # fill_height=fill_height,
            )

        self.concurrency_limit = concurrency_limit
        self.fn = fn
        self.add_multimodal_fn = add_multimodal_fn
        self.render_additional_inputs_fn = render_additional_inputs_fn
        self.multimodal_inputs = []
        self.is_async = inspect.iscoroutinefunction(
            self.fn
        ) or inspect.isasyncgenfunction(self.fn)
        self.is_generator = inspect.isgeneratorfunction(
            self.fn
        ) or inspect.isasyncgenfunction(self.fn)
        self.examples = examples
        if self.space_id and cache_examples is None:
            self.cache_examples = True
        else:
            self.cache_examples = cache_examples or False
        self.buttons: list[Button | None] = []

        if additional_inputs:
            if not isinstance(additional_inputs, list):
                additional_inputs = [additional_inputs]
            self.additional_inputs = [
                get_component_instance(i)
                for i in additional_inputs  # type: ignore
            ]
        else:
            self.additional_inputs = []
        if additional_inputs_accordion_name is not None:
            print(
                "The `additional_inputs_accordion_name` parameter is deprecated and will be removed in a future version of Gradio. Use the `additional_inputs_accordion` parameter instead."
            )
            self.additional_inputs_accordion_params = {
                "label": additional_inputs_accordion_name
            }
        if additional_inputs_accordion is None:
            self.additional_inputs_accordion_params = {
                "label": "Additional Inputs",
                "open": False,
            }
        elif isinstance(additional_inputs_accordion, str):
            self.additional_inputs_accordion_params = {
                "label": additional_inputs_accordion
            }
        elif isinstance(additional_inputs_accordion, Accordion):
            self.additional_inputs_accordion_params = (
                additional_inputs_accordion.recover_kwargs(
                    additional_inputs_accordion.get_config()
                )
            )
        else:
            raise ValueError(
                f"The `additional_inputs_accordion` parameter must be a string or gr.Accordion, not {type(additional_inputs_accordion)}"
            )

        with self:
            if title:
                Markdown(
                    f"<h1 style='text-align: center; margin-bottom: 1rem'>{self.title}</h1>"
                )
            if description:
                Markdown(description)

            if chatbot:
                self.chatbot = chatbot.render()
            else:
                self.chatbot = Chatbot(
                    label="Chatbot", scale=1, height=200 if fill_height else None
                )

            with Row():
                for btn in [retry_btn, undo_btn, clear_btn]:
                    if btn is not None:
                        if isinstance(btn, Button):
                            btn.render()
                        elif isinstance(btn, str):
                            btn = Button(btn, variant="secondary", size="sm")
                        else:
                            raise ValueError(
                                f"All the _btn parameters must be a gr.Button, string, or None, not {type(btn)}"
                            )
                    self.buttons.append(btn)  # type: ignore

            with Group():
                with Row():
                    if textbox:
                        textbox.container = False
                        textbox.show_label = False
                        textbox_ = textbox.render()
                        assert isinstance(textbox_, Textbox)
                        self.textbox = textbox_
                    else:
                        self.textbox = Textbox(
                            container=False,
                            show_label=False,
                            label="Message",
                            placeholder="Type a message...",
                            scale=7,
                            autofocus=autofocus,
                        )
                    if submit_btn is not None:
                        if isinstance(submit_btn, Button):
                            submit_btn.render()
                        elif isinstance(submit_btn, str):
                            submit_btn = Button(
                                submit_btn,
                                variant="primary",
                                scale=2,
                                min_width=150,
                            )
                        else:
                            raise ValueError(
                                f"The submit_btn parameter must be a gr.Button, string, or None, not {type(submit_btn)}"
                            )
                    if stop_btn is not None:
                        if isinstance(stop_btn, Button):
                            stop_btn.visible = False
                            stop_btn.render()
                        elif isinstance(stop_btn, str):
                            stop_btn = Button(
                                stop_btn,
                                variant="stop",
                                visible=False,
                                scale=2,
                                min_width=150,
                            )
                        else:
                            raise ValueError(
                                f"The stop_btn parameter must be a gr.Button, string, or None, not {type(stop_btn)}"
                            )
                    self.num_tokens = Textbox(
                            container=False,
                            show_label=False,
                            label="num_tokens",
                            placeholder="0 tokens",
                            scale=1,
                            interactive=False,
                            # autofocus=autofocus,
                            min_width=10
                        )
                    self.buttons.extend([submit_btn, stop_btn])  # type: ignore
                
                self.fake_api_btn = Button("Fake API", visible=False)
                self.fake_response_textbox = Textbox(label="Response", visible=False)
                (
                    self.retry_btn,
                    self.undo_btn,
                    self.clear_btn,
                    self.submit_btn,
                    self.stop_btn,
                ) = self.buttons


            any_unrendered_inputs = any(
                not inp.is_rendered for inp in self.additional_inputs
            )
            if self.add_multimodal_fn is not None:
                with Row():
                    self.multimodal_inputs = self.add_multimodal_fn()
                    if self.additional_inputs and any_unrendered_inputs:
                        with Accordion(**self.additional_inputs_accordion_params):  # type: ignore
                            if self.render_additional_inputs_fn is not None:
                                self.render_additional_inputs_fn()
                            else:
                                for input_component in self.additional_inputs:
                                    if not input_component.is_rendered:
                                        input_component.render()
            else:
                if self.additional_inputs and any_unrendered_inputs:
                    with Accordion(**self.additional_inputs_accordion_params):  # type: ignore
                        if self.render_additional_inputs_fn is not None:
                            self.render_additional_inputs_fn()
                        else:
                            for input_component in self.additional_inputs:
                                if not input_component.is_rendered:
                                    input_component.render()

            if examples:
                if self.is_generator:
                    examples_fn = self._examples_stream_fn
                else:
                    # examples_fn = self._examples_fn
                    raise NotImplementedError(f'Not streaming not impl')

                self.examples_handler = Examples(
                    examples=examples,
                    inputs=[self.textbox] + self.multimodal_inputs + self.additional_inputs,
                    outputs=self.chatbot,
                    fn=examples_fn,
                )

            # The example caching must happen after the input components have rendered
            if cache_examples:
                client_utils.synchronize_async(self.examples_handler.cache)

            self.saved_input = State()
            self.chatbot_state = (
                State(self.chatbot.value) if self.chatbot.value else State([])
            )

            self._setup_events()
            self._setup_api()
        
    def _clear_and_save_textbox(self, message: str, *multimodal_inputs) -> tuple[str, str]:
        saved_input = [message] + list(multimodal_inputs)
        outputs = [''] + [None] * len(multimodal_inputs)
        return outputs + [saved_input]
    
    def _add_inputs_to_history(self, history: List[List[Union[str, None]]], *args):
        message = args[0]
        multimodal_inputs = args[1:1 + len(self.multimodal_inputs)] if len(args) > 1 else None
        if multimodal_inputs is not None:
            is_file_exists = [(x is not None and os.path.exists(x)) for x in multimodal_inputs]
            if any(is_file_exists):
                file_exists = [f for f, ise in zip(multimodal_inputs, is_file_exists) if ise]
                if len(file_exists) > 1:
                    raise gr.Error(f"Cannot have more than 1 multimodal input at a time.")
                fname = file_exists[0]
                history.append([(fname,), None])
        if message is not None and message.strip() != "":
            history.append([message, None])
        return history


    def _display_input(
        self, saved_input: List[str], history: List[List[Union[str, None]]]
    ) -> Tuple[List[List[Union[str, None]]], List[List[list[Union[str, None]]]]]:
        # message = saved_input[0]
        # multimodal_inputs = saved_input[1:] if len(saved_input) > 1 else None
        # # ! If things wrong, return original history and give warning
        # if multimodal_inputs is not None:
        #     is_file_exists = [(x is not None and os.path.exists(x)) for x in multimodal_inputs]
        #     if any(is_file_exists):
        #         file_exists = [f for f, ise in zip(multimodal_inputs, is_file_exists) if ise]
        #         if len(file_exists) > 1:
        #             raise gr.Error(f"Cannot have more than 1 multimodal input at a time.")
        #         fname = file_exists[0]
        #         history.append([(fname,), None])
        # if message is not None and message.strip() != "":
        #     history.append([message, None])
        history = self._add_inputs_to_history(history, *saved_input)
        return history, history
    
    def _delete_prev_fn(
        self, history: list[list[str | None]]
    ) -> tuple[list[list[str | None]], str, list[list[str | None]]]:
        try:
            message, _ = history.pop()
        except IndexError:
            message = ""
        saved_input = [message or ""] + [None] * len(self.multimodal_inputs)
        return history, saved_input, history
    
    def _setup_events(self) -> None:
        from gradio.components import State
        has_on = False
        try:
            from gradio.events import Dependency, EventListenerMethod, on
            has_on = True
        except ImportError as ie:
            has_on = False
        submit_fn = self._stream_fn if self.is_generator else self._submit_fn
        if not self.is_generator:
            raise NotImplementedError(f'should use generator')

        if has_on:
            # new version
            submit_triggers = (
                [self.textbox.submit, self.submit_btn.click]
                if self.submit_btn
                else [self.textbox.submit]
            )
            submit_event = (
                on(
                    submit_triggers,
                    self._clear_and_save_textbox,
                    [self.textbox] + self.multimodal_inputs,
                    [self.textbox] + self.multimodal_inputs + [self.saved_input],
                    api_name=False,
                    queue=False,
                )
                .then(
                    self._display_input,
                    [self.saved_input, self.chatbot_state],
                    [self.chatbot, self.chatbot_state],
                    api_name=False,
                    queue=False,
                )
                .success(
                    submit_fn,
                    [self.chatbot_state] + self.additional_inputs,
                    [self.chatbot, self.chatbot_state, self.num_tokens],
                    api_name=False,
                )
            )
            self._setup_stop_events(submit_triggers, submit_event)
        else:
            raise ValueError(f'Better install new gradio version than 3.44.0')

        if self.retry_btn:
            retry_event = (
                self.retry_btn.click(
                    self._delete_prev_fn,
                    [self.chatbot_state],
                    [self.chatbot, self.saved_input, self.chatbot_state],
                    api_name=False,
                    queue=False,
                )
                .then(
                    self._display_input,
                    [self.saved_input, self.chatbot_state],
                    [self.chatbot, self.chatbot_state],
                    api_name=False,
                    queue=False,
                )
                .success(
                    submit_fn,
                    [self.chatbot_state] + self.additional_inputs,
                    [self.chatbot, self.chatbot_state, self.num_tokens],
                    api_name=False,
                )
            )
            self._setup_stop_events([self.retry_btn.click], retry_event)

        if self.undo_btn:
            self.undo_btn.click(
                # self._delete_prev_fn,
                # [self.chatbot_state],
                # [self.chatbot, self.saved_input, self.chatbot_state],
                undo_history_until_last_assistant_turn,
                [self.chatbot_state],
                [self.chatbot, self.chatbot_state],
                api_name=False,
                queue=False,
            )
            # .then(
            #     lambda x: x,
            #     [self.saved_input],
            #     [self.textbox],
            #     api_name=False,
            #     queue=False,
            # )

    async def _stream_fn(
        self,
        # message: str,
        history_with_input,
        request: Request,
        *args,
    ) -> AsyncGenerator:
        history = history_with_input[:-1]
        message = history_with_input[-1][0]
        inputs, _, _ = special_args(
            self.fn, inputs=[history_with_input, *args], request=request
        )

        if self.is_async:
            generator = self.fn(*inputs)
        else:
            generator = await anyio.to_thread.run_sync(
                self.fn, *inputs, limiter=self.limiter
            )
            generator = SyncToAsyncIterator(generator, self.limiter)

        # ! In case of error, yield the previous history & undo any generation before raising error
        try:
            first_response_pack = await async_iteration(generator)
            if isinstance(first_response_pack, (tuple, list)):
                first_response, num_tokens = first_response_pack
            else:
                first_response, num_tokens = first_response_pack, -1
            update = history + [[message, first_response]]
            yield update, update, f"{num_tokens} toks"
        except StopIteration:
            update = history + [[message, None]]
            yield update, update, "NaN toks"
        except Exception as e:
            yield history, history, "NaN toks"
            raise e

        try:
            async for response_pack in generator:
                if isinstance(response_pack, (tuple, list)):
                    response, num_tokens = response_pack
                else:
                    response, num_tokens = response_pack, "NaN toks"
                update = history + [[message, response]]
                yield update, update, f"{num_tokens} toks"
        except Exception as e:
            yield history, history, "NaN toks"
            raise e
    
    async def _examples_stream_fn(
        self,
        # message: str,
        *args,
    ) -> AsyncGenerator:
        history = []
        input_len = 1 + len(self.multimodal_inputs)
        saved_input = args[:input_len]
        message = saved_input[0]
        additional_inputs = [] if len(args) <= input_len else args[input_len:]
        history = self._add_inputs_to_history(history, *saved_input)
        inputs, _, _ = special_args(self.fn, inputs=[history, *additional_inputs], request=None)

        if self.is_async:
            generator = self.fn(*inputs)
        else:
            generator = await anyio.to_thread.run_sync(
                self.fn, *inputs, limiter=self.limiter
            )
            generator = SyncToAsyncIterator(generator, self.limiter)
        # async for response in generator:
        #     yield [[message, response]]
        
        try:
            async for response_pack in generator:
                if isinstance(response_pack, (tuple, list)):
                    response, num_tokens = response_pack
                else:
                    response, num_tokens = response_pack, "NaN toks"
                update = history + [[message, response]]
                yield update, update, f"{num_tokens} toks"
        except Exception as e:
            yield history, history, "NaN toks"
            raise e
    
    async def _examples_fn(self, message: str, *args) -> list[list[str | None]]:
        raise NotImplementedError
        inputs, _, _ = special_args(self.fn, inputs=[message, [], *args], request=None)

        if self.is_async:
            response = await self.fn(*inputs)
        else:
            response = await anyio.to_thread.run_sync(
                self.fn, *inputs, limiter=self.limiter
            )
        return [[message, response]]



def gradio_history_to_openai_conversations(message=None, history=None, system_prompt=None):
    conversations = []
    system_prompt = system_prompt or SYSTEM_PROMPT
    if history is not None and len(history) > 0:
        for i, (prompt, res) in enumerate(history):
            if prompt is not None:
                conversations.append({"role": "user", "content": prompt.strip()})
            if res is not None:
                conversations.append({"role": "assistant", "content": res.strip()})
    if message is not None:
        if len(message.strip()) == 0:
            raise gr.Error("The message cannot be empty!")
        conversations.append({"role": "user", "content": message.strip()})
    if conversations[0]['role'] != 'system':
        conversations = [{"role": "system", "content": system_prompt}] + conversations
    return conversations


def gradio_history_to_conversation_prompt(message=None, history=None, system_prompt=None):
    global MODEL_ENGINE
    full_prompt = MODEL_ENGINE.apply_chat_template(
        gradio_history_to_openai_conversations(
            message, history=history, system_prompt=system_prompt),
        add_generation_prompt=True
    )
    return full_prompt


def gradio_history_to_vision_conversations_paths(
        history, system_prompt=None, image_token=None
):
    image_token = image_token or IMAGE_TOKEN
    conversations = []
    image_paths = []
    for i, his in enumerate(history):
        prompt, response = his
        last_turn = conversations[-1] if len(conversations) > 0 else None
        if prompt is not None:
            if isinstance(prompt, tuple):
                image_path = prompt[0]
                if last_turn is not None and last_turn['role'] == 'user':
                    last_turn['content'] += f" {image_token}"
                else:
                    # last_turn None or last_turn['role'] == 'assistant'
                    conversations.append({
                        "role": "user",
                        "content": f"{image_token}"
                    })
                image_paths.append(image_path)
            else:
                assert prompt is not None and isinstance(prompt, str)
                if last_turn is not None and last_turn['role'] == 'user':
                    last_turn['content'] += f"\n{prompt}"
                else:
                    conversations.append({
                        "role": "user",
                        "content": prompt,
                    })
        if response is not None:
            assert isinstance(response, str)
            conversations.append({
                "role": "assistant",
                "content": response,
            })

    if conversations[0]['role'] != 'system':
        system_prompt = system_prompt or SYSTEM_PROMPT
        conversations = [{"role": "system", "content": system_prompt}] + conversations
    return conversations, image_paths
    


def gradio_history_to_vision_conversation_prompt_paths(
        history, system_prompt=None, image_token=None
):
    """
    Aggregate gradio history into openai conversations
    history = [
        ["Hello", "Response"],
        [(file,), None],
    ]
    --->
    [
        {"role": "user", "content": ...}
    ]
    """
    global MODEL_ENGINE
    
    conversations, image_paths = gradio_history_to_vision_conversations_paths(
        history, system_prompt, image_token
    )
    # print(f'convo: {json.dumps(conversations, indent=4, ensure_ascii=False)}\n{image_paths=}')
    full_prompt = MODEL_ENGINE.apply_chat_template(
        conversations,
        add_generation_prompt=True
    )
    return full_prompt, image_paths, conversations


def is_doc(file_path):
    is_doc_allowed = file_path.endswith((".pdf", ".docx", ".txt"))
    return is_doc_allowed


def read_doc(file_path):
    from langchain_community.document_loaders import PyPDFLoader, Docx2txtLoader, TextLoader
    if file_path.endswith('.pdf'):
        loader = PyPDFLoader(file_path)
    elif file_path.endswith('.docx'):
        loader = Docx2txtLoader(file_path)
    elif file_path.endswith('.txt'):
        loader = TextLoader(file_path)
    texts = loader.load()
    text = "\n\n".join([t.page_content for t in texts])
    return text


def doc_file_to_instruct_content(file_path, doc_instruction=None):
    doc_instruction = doc_instruction or DOC_INSTRUCTION
    content = doc_instruction.strip() + "\n" + DOC_TEMPLATE.format(content=read_doc(file_path))
    return content


def gradio_history_to_doc_conversation_prompt(
        history, system_prompt=None, doc_instruction=None,
):
    """
    Aggregate gradio history into openai conversations
    history = [
        ["Hello", "Response"],
        [(file,), None],
    ]
    --->
    [
        {"role": "user", "content": ...}
    ]
    """
    global MODEL_ENGINE
    # image_token = image_token or IMAGE_TOKEN
    doc_instruction = doc_instruction or DOC_INSTRUCTION
    conversations = []
    image_paths = []
    for i, his in enumerate(history):
        prompt, response = his
        last_turn = conversations[-1] if len(conversations) > 0 else None
        if prompt is not None:
            if isinstance(prompt, tuple):
                file_path = prompt[0]
                if not is_doc(file_path):
                    raise gr.Error(f'file not doc {file_path}')
                content = doc_file_to_instruct_content(file_path, doc_instruction)
                if last_turn is not None and last_turn['role'] == 'user':
                    last_turn['content'] += f"{content}"
                else:
                    # last_turn None or last_turn['role'] == 'assistant'
                    conversations.append({
                        "role": "user",
                        "content": f"{content}"
                    })
            else:
                assert prompt is not None and isinstance(prompt, str)
                if last_turn is not None and last_turn['role'] == 'user':
                    last_turn['content'] += f"\n{prompt}"
                else:
                    conversations.append({
                        "role": "user",
                        "content": prompt,
                    })
        if response is not None:
            assert isinstance(response, str)
            conversations.append({
                "role": "assistant",
                "content": response,
            })

    if conversations[0]['role'] != 'system':
        system_prompt = system_prompt or SYSTEM_PROMPT
        conversations = [{"role": "system", "content": system_prompt}] + conversations
    
    full_prompt = MODEL_ENGINE.apply_chat_template(
        conversations,
        add_generation_prompt=True
    )
    return full_prompt, conversations


def gradio_history_to_vision_doc_conversation_prompt_paths(
        history, system_prompt=None, image_token=None, doc_instruction=None,
):
    """
    Aggregate gradio history into openai conversations
    history = [
        ["Hello", "Response"],
        [(file,), None],
    ]
    --->
    [
        {"role": "user", "content": ...}
    ]
    """
    global MODEL_ENGINE
    image_token = image_token or IMAGE_TOKEN
    doc_instruction = doc_instruction or DOC_INSTRUCTION
    conversations = []
    image_paths = []
    for i, his in enumerate(history):
        prompt, response = his
        last_turn = conversations[-1] if len(conversations) > 0 else None
        if prompt is not None:
            if isinstance(prompt, tuple):
                file_path = prompt[0]
                if is_doc(file_path):
                    content = doc_file_to_instruct_content(file_path, doc_instruction)
                    if last_turn is not None and last_turn['role'] == 'user':
                        last_turn['content'] += f"{content}"
                    else:
                        # last_turn None or last_turn['role'] == 'assistant'
                        conversations.append({
                            "role": "user",
                            "content": f"{content}"
                        })
                else:
                    if last_turn is not None and last_turn['role'] == 'user':
                        last_turn['content'] += f" {image_token}"
                    else:
                        # last_turn None or last_turn['role'] == 'assistant'
                        conversations.append({
                            "role": "user",
                            "content": f"{image_token}"
                        })
                    image_paths.append(file_path)
            else:
                assert prompt is not None and isinstance(prompt, str)
                if last_turn is not None and last_turn['role'] == 'user':
                    last_turn['content'] += f"\n{prompt}"
                else:
                    conversations.append({
                        "role": "user",
                        "content": prompt,
                    })
        if response is not None:
            assert isinstance(response, str)
            conversations.append({
                "role": "assistant",
                "content": response,
            })

    if conversations[0]['role'] != 'system':
        system_prompt = system_prompt or SYSTEM_PROMPT
        conversations = [{"role": "system", "content": system_prompt}] + conversations
    
    full_prompt = MODEL_ENGINE.apply_chat_template(
        conversations,
        add_generation_prompt=True
    )
    return full_prompt, image_paths, conversations


@maybe_spaces_gpu
def vision_chat_response_stream_multiturn_engine(
    history: List[Tuple[str, str]], 
    temperature: float, 
    max_tokens: int, 
    system_prompt: Optional[str] = SYSTEM_PROMPT,
    image_token: Optional[str] = IMAGE_TOKEN,
):
    global MODEL_ENGINE
    temperature = float(temperature)
    # ! remove frequency_penalty
    # frequency_penalty = float(frequency_penalty)
    max_tokens = int(max_tokens)
    # ! skip safety
    if DATETIME_FORMAT in system_prompt:
        # ! This sometime works sometimes dont
        system_prompt = system_prompt.format(cur_datetime=get_datetime_string())
    # ! history now can have multimodal
        
    full_prompt, image_paths, conversations = gradio_history_to_vision_conversation_prompt_paths(
        history=history, system_prompt=system_prompt, image_token=image_token
    )

    if hasattr(MODEL_ENGINE, "get_multimodal_tokens"):
        num_tokens = MODEL_ENGINE.get_multimodal_tokens(full_prompt, image_paths=image_paths)
    else:
        num_tokens = len(MODEL_ENGINE.tokenizer.encode(full_prompt))
    if num_tokens >= MODEL_ENGINE.max_position_embeddings - 128:
        raise gr.Error(f"Conversation or prompt is too long ({num_tokens} toks), please clear the chatbox or try shorter input.")
    
    # print(f'{image_paths=}')
    # print(full_prompt)
    outputs = None
    response = None
    num_tokens = -1
    for j, outputs in enumerate(MODEL_ENGINE.generate_yield_string(
        prompt=full_prompt,
        temperature=temperature,
        max_tokens=max_tokens,
        image_paths=image_paths,
    )):
        if isinstance(outputs, tuple):
            response, num_tokens = outputs
        else:
            response, num_tokens = outputs, -1
        yield response, num_tokens

    print(format_conversation(history + [[None, response]]))
    
    if response is not None:
        yield response, num_tokens


@maybe_spaces_gpu
def doc_chat_response_stream_multiturn_engine(
    history: List[Tuple[str, str]], 
    temperature: float, 
    max_tokens: int, 
    system_prompt: Optional[str] = SYSTEM_PROMPT,
    doc_instruction: Optional[str] = DOC_INSTRUCTION,
):
    global MODEL_ENGINE
    temperature = float(temperature)
    # ! remove frequency_penalty
    # frequency_penalty = float(frequency_penalty)
    max_tokens = int(max_tokens)
    # ! skip safety
    if DATETIME_FORMAT in system_prompt:
        # ! This sometime works sometimes dont
        system_prompt = system_prompt.format(cur_datetime=get_datetime_string())
    # ! history now can have multimodal
        
    full_prompt, conversations = gradio_history_to_doc_conversation_prompt(
        history=history, system_prompt=system_prompt, doc_instruction=doc_instruction
    )

    # ! length checked
    num_tokens = len(MODEL_ENGINE.tokenizer.encode(full_prompt))
    if num_tokens >= MODEL_ENGINE.max_position_embeddings - 128:
        raise gr.Error(f"Conversation or prompt is too long ({num_tokens} toks), please clear the chatbox or try shorter input.")
    
    # print(full_prompt)
    outputs = None
    response = None
    num_tokens = -1
    for j, outputs in enumerate(MODEL_ENGINE.generate_yield_string(
        prompt=full_prompt,
        temperature=temperature,
        max_tokens=max_tokens,
        # image_paths=image_paths,
    )):
        if isinstance(outputs, tuple):
            response, num_tokens = outputs
        else:
            response, num_tokens = outputs, -1
        yield response, num_tokens

    print(format_conversation(history + [[None, response]]))
    
    if response is not None:
        yield response, num_tokens



@maybe_spaces_gpu
def vision_doc_chat_response_stream_multiturn_engine(
    history: List[Tuple[str, str]], 
    temperature: float, 
    max_tokens: int, 
    system_prompt: Optional[str] = SYSTEM_PROMPT,
    image_token: Optional[str] = IMAGE_TOKEN,
    doc_instruction: Optional[str] = DOC_INSTRUCTION,
):
    global MODEL_ENGINE
    temperature = float(temperature)
    # ! remove frequency_penalty
    # frequency_penalty = float(frequency_penalty)
    max_tokens = int(max_tokens)
    # ! skip safety
    if DATETIME_FORMAT in system_prompt:
        # ! This sometime works sometimes dont
        system_prompt = system_prompt.format(cur_datetime=get_datetime_string())
    # ! history now can have multimodal
        
    full_prompt, image_paths, conversations = gradio_history_to_vision_doc_conversation_prompt_paths(
        history=history, system_prompt=system_prompt, image_token=image_token, doc_instruction=doc_instruction
    )

    # ! length check
    if hasattr(MODEL_ENGINE, "get_multimodal_tokens"):
        num_tokens = MODEL_ENGINE.get_multimodal_tokens(full_prompt, image_paths=image_paths)
    else:
        num_tokens = len(MODEL_ENGINE.tokenizer.encode(full_prompt))
    if num_tokens >= MODEL_ENGINE.max_position_embeddings - 128:
        raise gr.Error(f"Conversation or prompt is too long ({num_tokens} toks), please clear the chatbox or try shorter input.")
    
    # print(full_prompt)
    # print(f'{image_paths=}')
    outputs = None
    response = None
    num_tokens = -1
    for j, outputs in enumerate(MODEL_ENGINE.generate_yield_string(
        prompt=full_prompt,
        temperature=temperature,
        max_tokens=max_tokens,
        image_paths=image_paths,
    )):
        if isinstance(outputs, tuple):
            response, num_tokens = outputs
        else:
            response, num_tokens = outputs, -1
        yield response, num_tokens

    print(format_conversation(history + [[None, response]]))
    
    if response is not None:
        yield response, num_tokens



@register_demo
class VisionChatInterfaceDemo(ChatInterfaceDemo):
    """
    Accept vision image
    """

    @property
    def tab_name(self):
        return "Vision Chat"
    
    @property
    def examples(self):
        return [
            ["What's strange about this image?", "assets/dog_monalisa.jpeg",],
            ["Explain why the sky is blue.", None,],
        ]

    def create_demo(
            self, 
            title: str | None = None, 
            description: str | None = None, 
            **kwargs
        ) -> gr.Blocks:
        system_prompt = kwargs.get("system_prompt", SYSTEM_PROMPT)
        max_tokens = kwargs.get("max_tokens", MAX_TOKENS)
        temperature = kwargs.get("temperature", TEMPERATURE)
        model_name = kwargs.get("model_name", MODEL_NAME)
        description = description or """Upload an image to ask question about it."""

        def add_multimodal_fn() -> List[Component]:
            image_input = gr.Image(label="Input Image", type="filepath", )
            return [image_input]

        additional_inputs = [
            gr.Number(value=temperature, label='Temperature', min_width=20), 
            gr.Number(value=max_tokens, label='Max-tokens', min_width=20), 
            gr.Textbox(value=system_prompt, label='System prompt', lines=1),
            gr.Textbox(value=IMAGE_TOKEN, label='Visual token', lines=1, interactive=IMAGE_TOKEN_INTERACTIVE, min_width=20),
        ]
        def render_additional_inputs_fn():
            with Row():
                additional_inputs[0].render()
                additional_inputs[1].render()
                additional_inputs[3].render()
            additional_inputs[2].render()

        demo_chat = MultiModalChatInterface(
            vision_chat_response_stream_multiturn_engine,
            chatbot=gr.Chatbot(
                label=model_name,
                bubble_full_width=False,
                latex_delimiters=[
                    { "left": "$", "right": "$", "display": False},
                    { "left": "$$", "right": "$$", "display": True},
                ],
                show_copy_button=True,
                layout="panel" if USE_PANEL else "bubble",
                height=CHATBOT_HEIGHT,
            ),
            # textbox=gr.Textbox(placeholder='Type message', lines=4, max_lines=128, min_width=200),
            textbox=gr.Textbox(placeholder='Type message', lines=1, max_lines=128, min_width=200, scale=8),
            submit_btn=gr.Button(value='Submit', variant="primary", scale=0),
            # ! consider preventing the stop button
            # stop_btn=None,
            add_multimodal_fn=add_multimodal_fn,
            title=title,
            description=description,
            additional_inputs=additional_inputs, 
            render_additional_inputs_fn=render_additional_inputs_fn,
            additional_inputs_accordion=gr.Accordion("Additional Inputs", open=True),
            examples=self.examples,
            cache_examples=False,
            css=CSS,
        )
        return demo_chat


def add_document_upload():
    file_input = gr.File(label='Upload pdf, docx, txt', file_count='single', file_types=['pdf', 'docx', 'txt'])
    # with Group():
    #     file_input = gr.Textbox(value=None, label='Document path', lines=1, interactive=False)
    #     upload_button = gr.UploadButton("Click to Upload document", file_types=['pdf', 'docx', 'txt'], file_count="single")
    #     upload_button.upload(lambda x: x.name, upload_button, file_input)
    return file_input


@register_demo
class DocChatInterfaceDemo(ChatInterfaceDemo):
    """
    Accept document (full length no RAG)
    """
    @property
    def tab_name(self):
        return "Doc Chat"
    
    @property
    def examples(self):
        return [
            ["Summarize the document", "assets/attention_short.pdf",],
            ["Explain why the sky is blue.", None,],
        ]
    
    def create_demo(
            self, 
            title: str | None = None, 
            description: str | None = None, 
            **kwargs
        ) -> gr.Blocks:
        system_prompt = kwargs.get("system_prompt", SYSTEM_PROMPT)
        max_tokens = kwargs.get("max_tokens", MAX_TOKENS)
        temperature = kwargs.get("temperature", TEMPERATURE)
        model_name = kwargs.get("model_name", MODEL_NAME)
        # frequence_penalty = FREQUENCE_PENALTY
        # presence_penalty = PRESENCE_PENALTY
        description = description or """Upload a short document to ask question about it."""

        def add_multimodal_fn() -> List[Component]:
            file_input = add_document_upload()
            # image_input = gr.Image(label="Input Image", type="filepath", )
            return [file_input]
        
        additional_inputs = [
            gr.Number(value=temperature, label='Temperature', min_width=20), 
            gr.Number(value=max_tokens, label='Max-tokens', min_width=20), 
            gr.Textbox(value=system_prompt, label='System prompt', lines=1),
            gr.Textbox(value=DOC_INSTRUCTION, label='Doc instruction', lines=1),
        ]
        def render_additional_inputs_fn():
            with Row():
                additional_inputs[0].render()
                additional_inputs[1].render()
            additional_inputs[2].render()
            additional_inputs[3].render()

        demo_chat = MultiModalChatInterface(
            doc_chat_response_stream_multiturn_engine,
            chatbot=gr.Chatbot(
                label=model_name,
                bubble_full_width=False,
                latex_delimiters=[
                    { "left": "$", "right": "$", "display": False},
                    { "left": "$$", "right": "$$", "display": True},
                ],
                show_copy_button=True,
                layout="panel" if USE_PANEL else "bubble",
                height=CHATBOT_HEIGHT,
            ),
            textbox=gr.Textbox(placeholder='Type message', lines=1, max_lines=128, min_width=200, scale=8),
            submit_btn=gr.Button(value='Submit', variant="primary", scale=0),
            # ! consider preventing the stop button
            add_multimodal_fn=add_multimodal_fn,
            title=title,
            description=description,
            additional_inputs=additional_inputs, 
            render_additional_inputs_fn=render_additional_inputs_fn,
            additional_inputs_accordion=gr.Accordion("Additional Inputs", open=True),
            examples=self.examples,
            cache_examples=False,
            css=CSS,
        )
        return demo_chat


@register_demo
class VisionDocChatInterfaceDemo(ChatInterfaceDemo):
    """
    Accept either vision image or document (full length no RAG)
    """
    @property
    def tab_name(self):
        return "Vision Doc Chat"

    @property
    def examples(self):
        return [
            ["What's strange about this image?", None, "assets/dog_monalisa.jpeg",],
            ["Summarize the document", "assets/attention_short.pdf", None,],
            ["Explain why the sky is blue.", None, None],
        ]
    
    def create_demo(
            self, 
            title: str | None = None, 
            description: str | None = None, 
            **kwargs
        ) -> gr.Blocks:
        system_prompt = kwargs.get("system_prompt", SYSTEM_PROMPT)
        max_tokens = kwargs.get("max_tokens", MAX_TOKENS)
        temperature = kwargs.get("temperature", TEMPERATURE)
        model_name = kwargs.get("model_name", MODEL_NAME)
        # frequence_penalty = FREQUENCE_PENALTY
        # presence_penalty = PRESENCE_PENALTY
        description = description or """Upload either an image or short document to ask question about it."""

        def add_multimodal_fn() -> List[Component]:
            file_input = add_document_upload()
            image_input = gr.Image(label="Input Image", type="filepath", )
            return [file_input, image_input]

        additional_inputs = [
            gr.Number(value=temperature, label='Temperature', min_width=20), 
            gr.Number(value=max_tokens, label='Max-tokens', min_width=20), 
            gr.Textbox(value=system_prompt, label='System prompt', lines=1),
            gr.Textbox(value=IMAGE_TOKEN, label='Visual token', lines=1, interactive=IMAGE_TOKEN_INTERACTIVE, min_width=2),
            gr.Textbox(value=DOC_INSTRUCTION, label='Doc instruction', lines=1),
        ]
        def render_additional_inputs_fn():
            with Row():
                additional_inputs[0].render()
                additional_inputs[1].render()
                additional_inputs[3].render()
            additional_inputs[2].render()
            additional_inputs[4].render()

        demo_chat = MultiModalChatInterface(
            vision_doc_chat_response_stream_multiturn_engine,
            chatbot=gr.Chatbot(
                label=MODEL_NAME,
                bubble_full_width=False,
                latex_delimiters=[
                    { "left": "$", "right": "$", "display": False},
                    { "left": "$$", "right": "$$", "display": True},
                ],
                show_copy_button=True,
                layout="panel" if USE_PANEL else "bubble",
                height=CHATBOT_HEIGHT,
            ),
            textbox=gr.Textbox(placeholder='Type message', lines=1, max_lines=128, min_width=200, scale=8),
            submit_btn=gr.Button(value='Submit', variant="primary", scale=0),
            add_multimodal_fn=add_multimodal_fn,
            title=title,
            description=description,
            additional_inputs=additional_inputs, 
            render_additional_inputs_fn=render_additional_inputs_fn,
            additional_inputs_accordion=gr.Accordion("Additional Inputs", open=True),
            examples=self.examples,
            cache_examples=False,
            css=CSS,
        )
        return demo_chat