Spaces:
Running
on
Zero
Running
on
Zero
File size: 29,538 Bytes
8889bbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 |
import os
from gradio.themes import ThemeClass as Theme
import numpy as np
import argparse
import gradio as gr
from typing import Any, Iterator
from typing import Iterator, List, Optional, Tuple
import filelock
import glob
import json
import time
from gradio.routes import Request
from gradio.utils import SyncToAsyncIterator, async_iteration
from gradio.helpers import special_args
import anyio
from typing import AsyncGenerator, Callable, Literal, Union, cast, Generator
from gradio_client.documentation import document, set_documentation_group
from gradio.components import Button, Component
from gradio.events import Dependency, EventListenerMethod
from typing import List, Optional, Union, Dict, Tuple
from tqdm.auto import tqdm
from huggingface_hub import snapshot_download
from gradio.components.base import Component
from .base_demo import register_demo, get_demo_class, BaseDemo
from .chat_interface import (
SYSTEM_PROMPT,
MODEL_NAME,
MAX_TOKENS,
TEMPERATURE,
CHAT_EXAMPLES,
gradio_history_to_openai_conversations,
gradio_history_to_conversation_prompt,
DATETIME_FORMAT,
get_datetime_string,
chat_response_stream_multiturn_engine,
ChatInterfaceDemo,
CustomizedChatInterface,
)
from gradio.events import Events
import inspect
from typing import AsyncGenerator, Callable, Literal, Union, cast
import anyio
from gradio_client import utils as client_utils
from gradio_client.documentation import document
from gradio.blocks import Blocks
from gradio.components import (
Button,
Chatbot,
Component,
Markdown,
State,
Textbox,
get_component_instance,
)
from gradio.events import Dependency, on
from gradio.helpers import create_examples as Examples # noqa: N812
from gradio.helpers import special_args
from gradio.layouts import Accordion, Group, Row
from gradio.routes import Request
from gradio.themes import ThemeClass as Theme
from gradio.utils import SyncToAsyncIterator, async_iteration
from ..globals import MODEL_ENGINE
from ..configs import (
USE_PANEL,
IMAGE_TOKEN,
IMAGE_TOKEN_INTERACTIVE,
CHATBOT_HEIGHT,
ALLOWED_PATHS,
)
from .multimodal_chat_interface import (
DOC_INSTRUCTION,
DOC_TEMPLATE,
CSS,
undo_history,
undo_history_until_last_assistant_turn,
MultiModalChatInterface,
gradio_history_to_conversation_prompt,
gradio_history_to_openai_conversations,
gradio_history_to_vision_conversation_prompt_paths,
gradio_history_to_doc_conversation_prompt,
gradio_history_to_vision_doc_conversation_prompt_paths,
VisionChatInterfaceDemo,
vision_chat_response_stream_multiturn_engine,
)
import glob
from pathlib import Path
from gradio import utils as gradio_utils
PREF_DIR = os.environ.get("PREF_DIR", "./tmp")
PREFERENCE_MAKE_DATA_PATH = os.environ.get("PREFERENCE_MAKE_DATA_PATH", "assets/example_pref.json")
IMAGE_DIR = os.environ.get("IMAGE_DIR", "./tmp_image")
EXAMPLE_IMAGE_PATHS = [
x
for x in glob.glob(os.path.join(IMAGE_DIR, "*"))
]
print(f'IMAGES: {EXAMPLE_IMAGE_PATHS[:3]=}')
# ! Existing images
IMAGE_GLOB_ROOT = "/mnt/workspace/workgroup/phi/raw_data/multimodal_seallm/processed/sft/dpo_examples"
# ALLOWED_PATHS.append(IMAGE_GLOB_ROOT)
IMAGE_GLOBS = {
# "geometry": "geo3k/train/*/img_diagram.png",
"Geometry": ["geoqa_plus/*png", "Ask question about to solve the puzzle, calculating angles, find values, ... Provide extra information in the question (e.g 'Angle 1 = 30 degrees, find angle 2 from image.')"],
"Everyday": ["gqa/images/*", "Ask question to (1) describe, (2) find details, (3) negation (e.g 'Where's the cat?' while there is no cat in image.), (4) write stories ...."],
"OCR (read text)": ["ocr_vqa/images/*", "Ask question (1) full OCR description, (2) read specific details (e.g 'Who wrote the book?')."],
"OpenViVQA": ["OpenViVQA/training-images/*", "Only vietnamese, (1) full OCR description, (2) read specific details, (3) image description and question answering"],
"Text-VQA": ["textvqa/train_images/*", "Ask question to (1) describe, (2) find details, (3) negation (e.g 'Where's the cat?' while there is no cat in image.), (4) write stories, (5) reasoning"],
"Landmarks": ["web-landmark/images/*", "Ask question to (1) Where is landmarks (2) What to do at that place (3) Write stories, (4) give advise for tourists..."],
"Everyday-VG2": ["vg/VG_100K_2/*", "Same with Everyday"],
}
IMAGE_CUT_OFF_BEGIN = 0
IMAGE_CUT_OFF = 100
# IMAGE_CUT_OFF = 20
IMAGE_GLOB_PATHS = {}
IMAGE_GLOB_DESCS = {}
for k, v in IMAGE_GLOBS.items():
glob_p, description = v
paths = []
for i, p in enumerate(glob.glob(os.path.join(IMAGE_GLOB_ROOT, glob_p))):
if i < IMAGE_CUT_OFF_BEGIN:
continue
if i >= IMAGE_CUT_OFF + IMAGE_CUT_OFF_BEGIN:
break
paths.append(p)
IMAGE_GLOB_PATHS[k] = paths
IMAGE_GLOB_DESCS[k] = description
print(IMAGE_GLOB_PATHS['Geometry'][:10])
def read_json(json_file):
print(f'Reading : {json_file}')
with open(json_file, 'r', encoding='utf-8') as f:
rows = json.load(f)
return rows
def write_json(data, json_file):
with open(json_file, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=4, ensure_ascii=False)
def convert_pref_data_to_openai_format(rows_dict):
for key, r in rows_dict.items():
if "conversation_prefix" in r:
assert "responses" in r, f'invalid: {r}'
continue
history = r['history']
conversations = []
for user, assistant in history:
conversations.append({"role": "user", "content": user.strip()})
conversations.append({"role": "assistant", "content": assistant.strip()})
r['conversation_prefix'] = conversations[:-1]
r['responses'] = [conversations[-1]]
r['original_response'] = conversations[-1]
if "lang" not in r:
r['lang'] = key[-2:]
# missing an item in responses
lang_set = list(set([r['lang'] for r in rows_dict.values()]))
return rows_dict, lang_set
def convert_mm_pref_data_to_openai_format(rows_dict):
pass
PREFERENCE_RATE_DICT = None
LANG_SET = ["en", "vi", "id", 'ms', "th", "zh", 'lo', 'km', 'tl', 'my']
if PREFERENCE_MAKE_DATA_PATH is not None and os.path.exists(PREFERENCE_MAKE_DATA_PATH):
print(f'Loading {PREFERENCE_MAKE_DATA_PATH}')
PREFERENCE_RATE_DICT = read_json(PREFERENCE_MAKE_DATA_PATH)
PREFERENCE_RATE_DICT, _LANG_SET = convert_pref_data_to_openai_format(PREFERENCE_RATE_DICT)
LANG_SET = LANG_SET + [l for l in _LANG_SET if l not in LANG_SET]
@document()
class CustomJsonlLogger(gr.FlaggingCallback):
def __init__(self):
self.num_lines = 0
def setup(
self,
components: list[Component],
flagging_dir: Union[str, Path],
):
self.components = components
self.flagging_dir = flagging_dir
os.makedirs(flagging_dir, exist_ok=True)
flagging_dir = self.flagging_dir
log_filepath = Path(flagging_dir) / "log.jsonl"
if Path(log_filepath).exists():
with open(log_filepath, "rb") as f:
self.num_lines = sum(1 for _ in f)
else:
self.num_lines = 0
def flag(
self,
flag_data: list[Any],
flag_option: str = "",
username: Union[str, None] = None,
) -> int:
import datetime
flagging_dir = self.flagging_dir
log_filepath = Path(flagging_dir) / "log.jsonl"
is_new = not Path(log_filepath).exists()
headers = [
getattr(component, "label", None) or f"component {idx}"
for idx, component in enumerate(self.components)
] + [
"flag",
"username",
"timestamp",
]
csv_data = []
for idx, (component, sample) in enumerate(zip(self.components, flag_data)):
save_dir = Path(
flagging_dir
) / client_utils.strip_invalid_filename_characters(
getattr(component, "label", None) or f"component {idx}"
)
if gradio_utils.is_update(sample):
csv_data.append(str(sample))
else:
csv_data.append(
component.flag(sample, flag_dir=save_dir)
if sample is not None
else ""
)
csv_data.append(flag_option)
csv_data.append(username if username is not None else "")
csv_data.append(str(datetime.datetime.now()))
json_obj = {}
for idx, (component, sample) in enumerate(zip(self.components, flag_data)):
save_dir = Path(
flagging_dir
) / client_utils.strip_invalid_filename_characters(
getattr(component, "label", None) or f"component {idx}"
)
label = getattr(component, "label", None) or f"component {idx}"
if gradio_utils.is_update(sample):
value = str(sample)
else:
value = component.flag(sample, flag_dir=save_dir) if sample is not None else None
json_obj[label] = value
json_obj['flag'] = flag_option
json_obj['username'] = username if username is not None else ""
json_obj['timestamp'] = str(datetime.datetime.now())
with open(log_filepath, "a", encoding="utf-8") as jsonl_file:
jsonl_file.write(json.dumps(json_obj, ensure_ascii=False) + "\n")
self.num_lines += 1
return self.num_lines
@document()
class VisionJsonlLogger(CustomJsonlLogger):
# ! must save the image
def flag(
self,
flag_data: list[Any],
flag_option: str = "",
username: Union[str, None] = None,
) -> int:
import datetime
from shutil import copyfile
flagging_dir = self.flagging_dir
log_filepath = Path(flagging_dir) / "log.jsonl"
image_dir = Path(flagging_dir) / "images"
is_new = not Path(log_filepath).exists()
os.makedirs(image_dir, exist_ok=True)
headers = [
getattr(component, "label", None) or f"component {idx}"
for idx, component in enumerate(self.components)
] + [
"flag",
"username",
"timestamp",
]
csv_data = []
for idx, (component, sample) in enumerate(zip(self.components, flag_data)):
save_dir = Path(
flagging_dir
) / client_utils.strip_invalid_filename_characters(
getattr(component, "label", None) or f"component {idx}"
)
if gradio_utils.is_update(sample):
csv_data.append(str(sample))
else:
csv_data.append(
component.flag(sample, flag_dir=save_dir)
if sample is not None
else ""
)
csv_data.append(flag_option)
csv_data.append(username if username is not None else "")
csv_data.append(str(datetime.datetime.now()))
json_obj = {}
for idx, (component, sample) in enumerate(zip(self.components, flag_data)):
save_dir = Path(
flagging_dir
) / client_utils.strip_invalid_filename_characters(
getattr(component, "label", None) or f"component {idx}"
)
label = getattr(component, "label", None) or f"component {idx}"
if gradio_utils.is_update(sample):
value = str(sample)
else:
value = component.flag(sample, flag_dir=save_dir) if sample is not None else None
if isinstance(value, list):
# Expecting history
from .multimodal_chat_interface import gradio_history_to_vision_conversations_paths
conversations, image_paths = gradio_history_to_vision_conversations_paths(value)
new_paths = [
os.path.join(image_dir, str(datetime.datetime.now()) + os.path.basename(p))
for p in image_paths
]
for np, ip in zip(new_paths, image_paths):
copyfile(ip, np)
json_obj[label] = conversations
json_obj[label + "-images"] = new_paths
else:
json_obj[label] = value
json_obj['flag'] = flag_option
json_obj['username'] = username if username is not None else ""
json_obj['timestamp'] = str(datetime.datetime.now())
with open(log_filepath, "a", encoding="utf-8") as jsonl_file:
jsonl_file.write(json.dumps(json_obj, ensure_ascii=False) + "\n")
self.num_lines += 1
return self.num_lines
def get_preference_radio():
pref_choice = gr.Radio(
['1 Better', '2 Better', 'Add best', 'dirty/undecided'],
label='preference',
info="Indicate if 1 or 2 is better. If both not excellent, pick 'Add best' and write the better one below. If question or answer is problematic, cannot decide, then choose dirty/undecided."
)
return pref_choice
def vision_submit_vision_response_stream_multiturn_engine_yhistory(
message: str,
input_image: str,
history: List[List[str]],
temperature: float,
max_tokens: int,
system_prompt: Optional[str] = SYSTEM_PROMPT,
image_token: Optional[str] = IMAGE_TOKEN,
):
# ! Add message and input_image into the history and submit
message = message.strip()
if message == "":
gr.Warning(f'Input text cannot be empty')
yield history
new_history = history
if input_image is not None and os.path.exists(input_image):
# ! image exist, so add message if it's not empty
new_history = new_history + [[(input_image,), None]]
if message != "":
new_history = new_history + [[message, None]]
else:
# ! message cannot be empty if there is no input_image
if message == "":
gr.Warning(f'Input text cannot be empty!')
yield history
return
else:
new_history = new_history + [[message, None]]
yield new_history
# ! yield current history
# use vision_chat_response_stream_multiturn_engine
response = None
for response, num_tokens in vision_chat_response_stream_multiturn_engine(
history=new_history,
temperature=temperature, max_tokens=max_tokens, system_prompt=system_prompt,
image_token=image_token,
):
yield new_history[:-1] + [[message, response]]
if response is not None:
yield new_history[:-1] + [[message, response]]
def vision_submit_2_histories(
message: str,
input_image: str,
history1: List[List[str]],
history2: List[List[str]],
temperature: float,
max_tokens: int,
system_prompt: Optional[str] = SYSTEM_PROMPT,
image_token: Optional[str] = IMAGE_TOKEN,
):
# need to yield 2 history
new_history1 = history1
new_history2 = history2
for his in vision_submit_vision_response_stream_multiturn_engine_yhistory(
message, input_image, history1, temperature, max_tokens, system_prompt, image_token,
):
new_history1 = his
yield new_history1, new_history2
for his in vision_submit_vision_response_stream_multiturn_engine_yhistory(
message, input_image, history2, temperature, max_tokens, system_prompt, image_token,
):
new_history2 = his
yield new_history1, new_history2
def undo_history_until_last_assistant_turn_message(history):
history = undo_history(history)
while len(history) > 0 and history[-1][-1] is None:
history = undo_history(history)
return history, history
def replace_last_response(input_text: str, history: List[Tuple[str, str]]):
# replace the last response with input_text
input_text = input_text.strip()
if input_text == "":
gr.Warning(f'prompt empty! dont send empty prompt')
return "", history
if len(history) == 0:
gr.Warning(f'History empty, cannot replace')
return input_text, history
history[-1][-1] = input_text
return "", history
# def load_image_from_gallery(selected_state: gr.SelectData):
# convo = sft_data_list[selected_state.index]
# dirname = sft_dirname
# image_path = os.path.join(dirname, convo['image'])
# return image_path
def load_image_from_gallery(data_list, selected_state: gr.SelectData):
image_path = data_list[selected_state.index]
# dirname = sft_dirname
# image_path = os.path.join(dirname, convo['image'])
return image_path
@register_demo
class VisionLivePreferencePickDemo(VisionChatInterfaceDemo):
@property
def examples(self):
return [
["What's strange about this image?", "assets/dog_monalisa.jpeg",],
["Explain why the sky is blue.", None,],
]
@property
def tab_name(self):
return "Vision Live Preference"
def create_demo(
self,
title: str | None = None,
description: str | None = None,
**kwargs
) -> gr.Blocks:
system_prompt = kwargs.get("system_prompt", SYSTEM_PROMPT)
max_tokens = kwargs.get("max_tokens", MAX_TOKENS)
temperature = kwargs.get("temperature", TEMPERATURE)
model_name = kwargs.get("model_name", MODEL_NAME)
log_folder = os.path.join(PREF_DIR, "live_preference_pick")
description = f"""
## Live generation preference picking
Live generation is similar to the Preference Picking demo, except that linguists can come up with questions/prompts **on their own** instead of pre-existing data.
PREF_DIR: {log_folder}
"""
instruction_content = f"""
### Tasks
You are enabled to freely build 2 different conversations using the model and pick the better conversations.
You can also create best responses if model's generated ones are not good.
### Requirements
The 2 conversations must share at least the first user query. Other than that, the length, number of turns, user queries (except the first one) can vary.
For example:
```
# Valid conversation pairs
"User: Hello, 1+1=?" -> "Bot: 1+1=2" -> "User: what about 123+13?" -> "Bot: 123+13=136"
-> "Bot: I dont know"
"User: Hello, 1+1=?" -> "Bot: 1+1=2" -> "User: what about 123+13?" -> "Bot: 123+13=136"
-> "Bot: 1+1=3" -> "User: that's wrong!" -> "Bot: Im sorry man."
```
```
# Invalid pairs:
"User: Hello, 1+1=?" -> "Bot: 1+1=2"
"User: Tell me a joke" -> "Bot: here is the joke for your..."
```
### Steps to proceed:
There are multiple buttons:
* `Submit both`: Submit the text prompt to both chatboxes, expect different (or same) answers.
* `Regenerate`: Regenerate the responses of both chatboxes from the last user queries.
* `Clear`: Clear both chatboxes.
The following numbered buttons (1 or 2) is applied to only Bot-1 or Bot-2 respectively.
* `Submit-1`: Submit the text prompt only one chatbot (1 or 2).
* `Undo-1`: Undo the last generation (both last response and query)
* `Regen-1`: Regenerate the last response.
* `Replace-1`: Replace the last response with a better response (in case the last response is incorrect, unsatisfactory)
"""
callback = VisionJsonlLogger()
with gr.Blocks(css=CSS) as pdemo:
gr.Markdown(description)
with gr.Accordion(label="Instructions and Guidelines", open=False):
gr.Markdown(instruction_content)
with gr.Accordion(label="Additional input", open=False):
temp = gr.Number(value=temperature, label='Temperature', info="Higher -> more random")
length = gr.Number(value=max_tokens, label='Max tokens', info='Increase if want more generation')
# freq_pen = gr.Number(value=frequence_penalty, label='Frequency penalty', info='> 0 encourage new tokens over repeated tokens')
# pres_pen = gr.Number(value=presence_penalty, label='Presence penalty', info='> 0 encourage new tokens, < 0 encourage existing tokens')
# stop_strings = gr.Textbox(value="<s>,</s>,<|im_start|>", label='Stop strings', info='Comma-separated string to stop generation.', lines=1)
system_prompt = gr.Textbox(value=system_prompt, label='system_prompt', lines=1)
with gr.Row():
chatbot_1 = gr.Chatbot(
[],
label="Bot-1",
elem_id="chatbot-1",
bubble_full_width=False,
latex_delimiters=[
# { "left": "$", "right": "$", "display": False},
{ "left": "$$", "right": "$$", "display": True},
],
show_copy_button=True,
layout="panel" if USE_PANEL else "bubble",
height=CHATBOT_HEIGHT,
)
chatbot_2 = gr.Chatbot(
[],
label="Bot-2",
elem_id="chatbot-2",
bubble_full_width=False,
latex_delimiters=[
# { "left": "$", "right": "$", "display": False},
{ "left": "$$", "right": "$$", "display": True},
],
show_copy_button=True,
layout="panel" if USE_PANEL else "bubble",
height=CHATBOT_HEIGHT,
)
with gr.Row():
input_text = gr.Textbox(
scale=6,
lines=12,
# lines=4,
max_lines=40,
show_label=False,
placeholder="Enter text and press enter, or upload an image",
container=False,
)
# submit will submit the same input text to both responses
input_image = gr.Image(
label="input_image", type="filepath", scale=3,
# height=250,
)
with gr.Row():
gen_submit = gr.Button('Send both', scale=1, variant='primary')
# regenerate should not care about input_text, it just undo the previous history
# regen_submit = gr.Button('Regenerate', scale=1)
clear_btn = gr.Button('Clear', scale=1)
# submit
with gr.Row():
chat1_submit = gr.Button('Send-1', variant='primary')
chat1_undo = gr.Button('Undo-1')
# chat1_regenerate = gr.Button('Regen-1')
chat1_replace = gr.Button('Replace-1')
chat2_submit = gr.Button('Send-2', variant='primary')
chat2_undo = gr.Button('Undo-2')
# chat2_regenerate = gr.Button('Regen-2')
chat2_replace = gr.Button('Replace-2')
gr.Markdown(f'**Do not click `Record Choice` twice with the same data sample!**')
with gr.Row():
pref_choice = get_preference_radio()
# with gr.Row():
# text_replace = gr.Textbox(
# placeholder="If both responses are not good, write a better response here. Only apply to the last response.",
# lines=2,
# max_lines=30,
# scale=6,
# label="best_response"
# )
submit_choice_btn = gr.Button('Record Choice', variant='secondary')
from functools import partial
with gr.Row():
gr.Examples(
label="Random images",
examples=[[x] for x in EXAMPLE_IMAGE_PATHS],
inputs=input_image,
cache_examples=False,
examples_per_page=100,
)
for k, plist in IMAGE_GLOB_PATHS.items():
print(f'{k}: {plist[:5]}')
gr.Markdown(f"{k}: {IMAGE_GLOB_DESCS[k]}")
gallery = gr.Gallery(
label=k,
value=plist,
allow_preview=False,
columns=10,
# rows=2,
height=250,
)
def _load_image_from_gallery(selected_state: gr.SelectData):
image_path = selected_state.value['image']['path']
print(f'Select: {image_path}')
return image_path
gallery.select(
_load_image_from_gallery,
# lambda select: plist[select.index],
# inputs=,
outputs=[input_image],
queue=False
)
# ! events for submit choices
submit_choice_btn.click(
lambda: gr.Button(value="Saving...", interactive=False, variant='stop'),
None,
submit_choice_btn,
queue=False,
api_name=False,
)
visual_feedback = True
def flag_method(request: gr.Request, *args):
# ! must save the image somewhere
try:
callback.flag(args)
except Exception as e:
print(f"Error while flagging: {e}")
if visual_feedback:
return "Error!"
if not visual_feedback:
return
gr.Info(f'Saving preference sucessful ({args[0]})')
time.sleep(1) # to provide enough time for the user to observe button change
return gr.Button(value="Record Choice", interactive=True)
callback.setup([chatbot_1, chatbot_2, pref_choice], log_folder)
submit_choice_btn.click(
flag_method, [chatbot_1, chatbot_2, pref_choice], submit_choice_btn,
preprocess=False, queue=False, api_name=False
)
# ! button evenrs
from gradio.events import Dependency, EventListenerMethod, on
generate_sub_events_both = [input_text.submit, gen_submit.click]
on(
generate_sub_events_both,
vision_submit_2_histories,
[
input_text, input_image, chatbot_1, chatbot_2,
temp, length, system_prompt
],
[chatbot_1, chatbot_2],
api_name=False,
queue=True,
).then(
lambda mes, img: ("", None),
[input_text, input_image],
[input_text, input_image],
api_name=False,
queue=False,
)
clear_btn.click(
lambda c1, c2, txt, img: ([], [], "", None),
[chatbot_1, chatbot_2, input_text, input_image],
[chatbot_1, chatbot_2, input_text, input_image],
api_name=False,
queue=True,
)
chat1_submit.click(
vision_submit_vision_response_stream_multiturn_engine_yhistory,
[
input_text, input_image, chatbot_1,
temp, length, system_prompt,
],
[chatbot_1],
api_name=False,
queue=True,
).then(
lambda mes, img: ("", None),
[input_text, input_image],
[input_text, input_image],
api_name=False,
queue=False,
)
chat2_submit.click(
vision_submit_vision_response_stream_multiturn_engine_yhistory,
[
input_text, input_image, chatbot_2,
temp, length, system_prompt,
],
[chatbot_2],
api_name=False,
queue=True,
).then(
lambda mes, img: ("", None),
[input_text, input_image],
[input_text, input_image],
api_name=False,
queue=False,
)
chat1_undo.click(
undo_history_until_last_assistant_turn,
chatbot_1,
[chatbot_1, input_text],
api_name=False,
queue=True,
)
chat2_undo.click(
undo_history_until_last_assistant_turn,
chatbot_2,
[chatbot_2, input_text],
api_name=False,
queue=True,
)
chat1_replace.click(
replace_last_response,
[input_text, chatbot_1],
[input_text, chatbot_1],
api_name=False,
queue=True,
)
chat2_replace.click(
replace_last_response,
[input_text, chatbot_2],
[input_text, chatbot_2],
api_name=False,
queue=True,
)
return pdemo |