Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,365 Bytes
d3c19b3 8889bbb d3c19b3 8889bbb 390b3ef 8889bbb 2648bf6 8889bbb 390b3ef 8889bbb 93038e2 8889bbb 390b3ef 8889bbb 93038e2 8889bbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
try:
import spaces
def maybe_spaces_gpu(fn):
fn = spaces.GPU(fn)
return fn
except ModuleNotFoundError:
print(f'Cannot import hf `spaces` with `import spaces`.')
def maybe_spaces_gpu(fn):
return fn
import os
from gradio.themes import ThemeClass as Theme
import numpy as np
import argparse
import gradio as gr
from typing import Any, Iterator
from typing import Iterator, List, Optional, Tuple
import filelock
import glob
import json
import time
from gradio.routes import Request
from gradio.utils import SyncToAsyncIterator, async_iteration
from gradio.helpers import special_args
import anyio
from typing import AsyncGenerator, Callable, Literal, Union, cast, Generator
from gradio_client.documentation import document, set_documentation_group
from gradio.components import Button, Component
from gradio.events import Dependency, EventListenerMethod
from typing import List, Optional, Union, Dict, Tuple
from tqdm.auto import tqdm
from huggingface_hub import snapshot_download
import inspect
from typing import AsyncGenerator, Callable, Literal, Union, cast
import anyio
from gradio_client import utils as client_utils
from gradio_client.documentation import document
from gradio.blocks import Blocks
from gradio.components import (
Button,
Chatbot,
Component,
Markdown,
State,
Textbox,
get_component_instance,
)
from gradio.events import Dependency, on
from gradio.helpers import create_examples as Examples # noqa: N812
from gradio.helpers import special_args
from gradio.layouts import Accordion, Group, Row
from gradio.routes import Request
from gradio.themes import ThemeClass as Theme
from gradio.utils import SyncToAsyncIterator, async_iteration
from .base_demo import register_demo, get_demo_class, BaseDemo
from ..configs import (
SYSTEM_PROMPT,
MODEL_NAME,
MAX_TOKENS,
TEMPERATURE,
)
from ..globals import MODEL_ENGINE
@maybe_spaces_gpu
def generate_text_completion_stream_engine(
message: str,
temperature: float,
max_tokens: int,
stop_strings: str = '<s>,</s>,<|im_start|>,<|im_end|>',
):
global MODEL_ENGINE
temperature = float(temperature)
# ! remove frequency_penalty
# frequency_penalty = float(frequency_penalty)
max_tokens = int(max_tokens)
# message = message.strip()
stop_strings = [x.strip() for x in stop_strings.strip().split(",")]
stop_strings = list(set(stop_strings + ['</s>', '<|im_start|>', '<|im_end|>']))
if message.strip() != message:
gr.Warning(f'There are preceding/trailing spaces in the message.')
if len(message) == 0:
raise gr.Error("The message cannot be empty!")
num_tokens = len(MODEL_ENGINE.tokenizer.encode(message))
if num_tokens >= MODEL_ENGINE.max_position_embeddings - 128:
raise gr.Error(f"Conversation or prompt is too long ({num_tokens} toks), please clear the chatbox or try shorter input.")
outputs = None
response = None
num_tokens = -1
for j, outputs in enumerate(MODEL_ENGINE.generate_yield_string(
prompt=message,
temperature=temperature,
max_tokens=max_tokens,
stop_strings=stop_strings,
)):
if isinstance(outputs, tuple):
response, num_tokens = outputs
else:
response, num_tokens = outputs, -1
yield message + response, f"{num_tokens} tokens"
print(f'Completion:\n{message}|>>>>>|{response}')
if response is not None:
yield message + response, f"{num_tokens} tokens"
@register_demo
class TextCompletionDemo(BaseDemo):
@property
def tab_name(self):
return "Text Completion"
def create_demo(
self,
title: str | None = None,
description: str | None = None,
**kwargs
) -> gr.Blocks:
system_prompt = kwargs.get("system_prompt", SYSTEM_PROMPT)
max_tokens = kwargs.get("max_tokens", MAX_TOKENS)
temperature = kwargs.get("temperature", TEMPERATURE)
model_name = kwargs.get("model_name", MODEL_NAME)
# frequence_penalty = FREQUENCE_PENALTY
# presence_penalty = PRESENCE_PENALTY
max_tokens = max_tokens // 4
description = description or f"""Put any context string (like few-shot prompts)"""
with gr.Blocks() as demo_text_completion:
if title:
gr.Markdown(title)
if description:
gr.Markdown(description)
with gr.Row():
txt = gr.Textbox(
scale=4,
lines=16,
show_label=False,
placeholder="Enter any free form text and submit",
container=False,
)
with gr.Row():
submit_button = gr.Button('Submit', variant='primary', scale=9)
stop_button = gr.Button('Stop', variant='stop', scale=9, visible=False)
num_tokens = Textbox(
container=False,
show_label=False,
label="num_tokens",
placeholder="0 tokens",
scale=1,
interactive=False,
min_width=10
)
with gr.Row():
temp_input = gr.Number(value=temperature, label='Temperature', info="Higher -> more random")
length_input = gr.Number(value=max_tokens, label='Max tokens', info='Increase if want more generation')
stop_strings = gr.Textbox(value="<eos>,<s>,</s>,<|im_start|>,<|im_end|>", label='Stop strings', info='Comma-separated string to stop generation only in FEW-SHOT mode', lines=1)
examples = gr.Examples(
examples=[
["The following is the recite the declaration of independence:",],
["<|im_start|>system\nYou are a helpful assistant.<eos>\n<|im_start|>user\nTell me a joke.<eos>\n<|im_start|>assistant\n",]
],
inputs=[txt, temp_input, length_input, stop_strings],
# outputs=[txt]
cache_examples=False,
)
# ! Handle stop button
submit_trigger = submit_button.click
submit_event = submit_button.click(
# submit_trigger,
generate_text_completion_stream_engine,
[txt, temp_input, length_input, stop_strings],
[txt, num_tokens],
# api_name=False,
# queue=False,
)
submit_trigger(
lambda: (
Button(visible=False), Button(visible=True),
),
None,
[submit_button, stop_button],
api_name=False,
queue=False,
)
submit_event.then(
lambda: (Button(visible=True), Button(visible=False)),
None,
[submit_button, stop_button],
api_name=False,
queue=False,
)
stop_button.click(
None,
None,
None,
cancels=submit_event,
api_name=False,
)
return demo_text_completion |