Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,142 Bytes
8889bbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import os
import numpy as np
import argparse
import gradio as gr
from typing import Any, Iterator
from typing import Iterator, List, Optional, Tuple
import filelock
import glob
import json
import time
from gradio.routes import Request
from gradio.utils import SyncToAsyncIterator, async_iteration
from gradio.helpers import special_args
import anyio
from typing import AsyncGenerator, Callable, Literal, Union, cast
from gradio_client.documentation import document, set_documentation_group
from typing import List, Optional, Union, Dict, Tuple
from tqdm.auto import tqdm
from huggingface_hub import snapshot_download
from gradio.components import Button
from gradio.events import Dependency, EventListenerMethod
from .base_engine import BaseEngine
# @@ environments ================
from ..configs import (
DTYPE,
TENSOR_PARALLEL,
MODEL_PATH,
QUANTIZATION,
MAX_TOKENS,
TEMPERATURE,
FREQUENCE_PENALTY,
PRESENCE_PENALTY,
GPU_MEMORY_UTILIZATION,
STREAM_CHECK_MULTIPLE,
STREAM_YIELD_MULTIPLE,
)
llm = None
demo = None
def vllm_abort(self):
sh = self.llm_engine.scheduler
for g in (sh.waiting + sh.running + sh.swapped):
sh.abort_seq_group(g.request_id)
from vllm.sequence import SequenceStatus
scheduler = self.llm_engine.scheduler
for state_queue in [scheduler.waiting, scheduler.running, scheduler.swapped]:
for seq_group in state_queue:
# if seq_group.request_id == request_id:
# Remove the sequence group from the state queue.
state_queue.remove(seq_group)
for seq in seq_group.seqs:
if seq.is_finished():
continue
scheduler.free_seq(seq, SequenceStatus.FINISHED_ABORTED)
def _vllm_run_engine(self: Any, use_tqdm: bool = False) -> Dict[str, Any]:
from vllm.outputs import RequestOutput
# Initialize tqdm.
if use_tqdm:
num_requests = self.llm_engine.get_num_unfinished_requests()
pbar = tqdm(total=num_requests, desc="Processed prompts")
# Run the engine.
outputs: Dict[str, RequestOutput] = {}
while self.llm_engine.has_unfinished_requests():
step_outputs = self.llm_engine.step()
for output in step_outputs:
outputs[output.request_id] = output
if len(outputs) > 0:
yield outputs
def vllm_generate_stream(
self: Any,
prompts: Optional[Union[str, List[str]]] = None,
sampling_params: Optional[Any] = None,
prompt_token_ids: Optional[List[List[int]]] = None,
use_tqdm: bool = False,
) -> Dict[str, Any]:
"""Generates the completions for the input prompts.
NOTE: This class automatically batches the given prompts, considering
the memory constraint. For the best performance, put all of your prompts
into a single list and pass it to this method.
Args:
prompts: A list of prompts to generate completions for.
sampling_params: The sampling parameters for text generation. If
None, we use the default sampling parameters.
prompt_token_ids: A list of token IDs for the prompts. If None, we
use the tokenizer to convert the prompts to token IDs.
use_tqdm: Whether to use tqdm to display the progress bar.
Returns:
A list of `RequestOutput` objects containing the generated
completions in the same order as the input prompts.
"""
from vllm import LLM, SamplingParams
if prompts is None and prompt_token_ids is None:
raise ValueError("Either prompts or prompt_token_ids must be "
"provided.")
if isinstance(prompts, str):
# Convert a single prompt to a list.
prompts = [prompts]
if prompts is not None and prompt_token_ids is not None:
if len(prompts) != len(prompt_token_ids):
raise ValueError("The lengths of prompts and prompt_token_ids "
"must be the same.")
if sampling_params is None:
# Use default sampling params.
sampling_params = SamplingParams()
# Add requests to the engine.
if prompts is not None:
num_requests = len(prompts)
else:
num_requests = len(prompt_token_ids)
for i in range(num_requests):
prompt = prompts[i] if prompts is not None else None
if prompt_token_ids is None:
token_ids = None
else:
token_ids = prompt_token_ids[i]
self._add_request(prompt, sampling_params, token_ids)
# return self._run_engine(use_tqdm)
yield from _vllm_run_engine(self, use_tqdm)
class VllmEngine(BaseEngine):
def __init__(self, **kwargs) -> None:
super().__init__(**kwargs)
@property
def tokenizer(self):
return self._model.get_tokenizer()
def load_model(self, ):
import torch
try:
compute_capability = torch.cuda.get_device_capability()
print(f'Torch CUDA compute_capability: {compute_capability}')
except Exception as e:
print(f'Failed to print compute_capability version: {e}')
import vllm
from vllm import LLM
print(f'VLLM: {vllm.__version__=}')
if QUANTIZATION == 'awq':
print(F'Load model in int4 quantization')
llm = LLM(
model=MODEL_PATH,
dtype="float16",
tensor_parallel_size=TENSOR_PARALLEL,
gpu_memory_utilization=GPU_MEMORY_UTILIZATION,
quantization="awq",
max_model_len=MAX_TOKENS
)
else:
llm = LLM(
model=MODEL_PATH,
dtype=DTYPE,
tensor_parallel_size=TENSOR_PARALLEL,
gpu_memory_utilization=GPU_MEMORY_UTILIZATION,
max_model_len=MAX_TOKENS
)
try:
print(llm.llm_engine.workers[0].model)
except Exception as e:
print(f'Cannot print model worker: {e}')
try:
llm.llm_engine.scheduler_config.max_model_len = MAX_TOKENS
llm.llm_engine.scheduler_config.max_num_batched_tokens = MAX_TOKENS
except Exception as e:
print(f'Cannot set parameters: {e}')
self._model = llm
def generate_yield_string(self, prompt, temperature, max_tokens, stop_strings: Optional[Tuple[str]] = None, **kwargs):
from vllm import SamplingParams
# ! must abort previous ones
vllm_abort(llm)
sampling_params = SamplingParams(
temperature=temperature,
max_tokens=max_tokens,
# frequency_penalty=frequency_penalty,
# presence_penalty=presence_penalty,
stop=stop_strings,
)
cur_out = None
num_tokens = len(self.tokenizer.encode(prompt))
for j, gen in enumerate(vllm_generate_stream(llm, prompt, sampling_params)):
if cur_out is not None and (STREAM_YIELD_MULTIPLE < 1 or j % STREAM_YIELD_MULTIPLE == 0) and j > 0:
yield cur_out, num_tokens
assert len(gen) == 1, f'{gen}'
item = next(iter(gen.values()))
cur_out = item.outputs[0].text
if cur_out is not None:
full_text = prompt + cur_out
num_tokens = len(self.tokenizer.encode(full_text))
yield cur_out, num_tokens
def batch_generate(self, prompts, temperature, max_tokens, stop_strings: Optional[Tuple[str]] = None, **kwargs):
"""
Only vllm should support this, the other engines is only batch=1 only
"""
from vllm import SamplingParams
# ! must abort previous ones
vllm_abort(llm)
sampling_params = SamplingParams(
temperature=temperature,
max_tokens=max_tokens,
# frequency_penalty=frequency_penalty,
# presence_penalty=presence_penalty,
stop=stop_strings,
)
generated = llm.generate(prompts, sampling_params, use_tqdm=False)
responses = [g.outputs[0].text for g in generated]
return responses |