File size: 45,727 Bytes
d90aef3
203c3cd
 
d90aef3
203c3cd
6355b7b
203c3cd
 
f028d50
203c3cd
 
 
f028d50
203c3cd
 
 
 
 
 
 
f028d50
 
 
203c3cd
f028d50
 
 
437fc15
a572fd2
 
6ded56f
6355b7b
 
a572fd2
 
 
6ded56f
 
437fc15
6355b7b
 
437fc15
6ded56f
 
437fc15
99241b8
437fc15
6ded56f
 
437fc15
 
 
 
6ded56f
 
a572fd2
437fc15
a572fd2
437fc15
 
 
 
6ded56f
 
 
437fc15
6ded56f
437fc15
 
6ded56f
 
437fc15
 
3709b60
437fc15
 
 
 
6ded56f
 
437fc15
6ded56f
0a39e99
6ded56f
 
 
 
 
d90aef3
 
 
 
 
6ded56f
437fc15
 
 
 
 
203c3cd
 
3709b60
f028d50
437fc15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6355b7b
 
 
 
437fc15
 
 
 
 
 
 
 
 
 
 
6355b7b
 
437fc15
 
 
 
 
 
 
 
 
 
9c84158
 
437fc15
 
 
 
 
 
9c84158
437fc15
 
6355b7b
437fc15
 
 
 
 
6355b7b
437fc15
 
2970a3d
0b99c51
 
2970a3d
0b99c51
 
2970a3d
 
 
437fc15
 
 
 
 
 
 
 
2970a3d
 
437fc15
 
 
 
 
 
 
 
 
203c3cd
 
a572fd2
6355b7b
a572fd2
 
 
 
 
 
 
 
 
 
 
 
 
437fc15
203c3cd
 
 
 
437fc15
203c3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437fc15
203c3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437fc15
203c3cd
 
 
 
 
 
 
a572fd2
 
 
 
 
 
 
 
 
 
 
 
203c3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437fc15
 
 
 
 
 
 
6355b7b
437fc15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203c3cd
c14f353
3709b60
 
 
 
 
 
 
437fc15
 
 
 
3709b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203c3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a572fd2
203c3cd
 
 
a572fd2
 
 
3709b60
 
a572fd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203c3cd
a572fd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
437fc15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203c3cd
437fc15
 
 
 
 
 
 
 
 
 
 
 
 
a572fd2
437fc15
a572fd2
203c3cd
5622434
3709b60
203c3cd
 
 
 
 
 
 
 
 
 
 
5622434
3709b60
203c3cd
 
 
 
 
 
 
 
 
 
 
 
437fc15
203c3cd
 
 
e33248e
203c3cd
5622434
203c3cd
 
5622434
203c3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3709b60
203c3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a572fd2
6355b7b
 
 
 
 
437fc15
a572fd2
203c3cd
6355b7b
203c3cd
6355b7b
 
a572fd2
 
 
 
 
 
203c3cd
437fc15
 
 
 
 
 
 
 
 
 
 
 
 
6355b7b
437fc15
 
6355b7b
437fc15
 
 
 
 
 
 
203c3cd
 
 
 
 
 
a572fd2
203c3cd
3709b60
203c3cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a572fd2
 
437fc15
 
 
 
a572fd2
203c3cd
 
 
 
437fc15
203c3cd
 
 
 
 
437fc15
a572fd2
 
437fc15
 
 
 
 
 
 
203c3cd
 
 
 
a572fd2
437fc15
203c3cd
 
a572fd2
437fc15
 
 
 
 
 
 
 
203c3cd
 
 
 
 
 
 
 
 
 
a572fd2
 
5622434
203c3cd
 
6ded56f
 
 
 
 
 
 
 
 
 
 
 
 
 
203c3cd
 
 
e9cbae4
 
 
6ded56f
e9cbae4
 
 
 
a572fd2
6ded56f
 
 
 
 
6355b7b
 
6ded56f
437fc15
6355b7b
 
6ded56f
 
 
3709b60
6ded56f
437fc15
 
6355b7b
 
6ded56f
e9cbae4
203c3cd
6ded56f
203c3cd
6ded56f
203c3cd
 
6ded56f
 
 
99241b8
 
 
 
 
6ded56f
99241b8
437fc15
99241b8
 
6ded56f
 
 
437fc15
 
 
 
 
 
 
 
 
 
 
203c3cd
 
 
 
 
 
 
 
 
a572fd2
203c3cd
 
 
 
 
 
 
 
a572fd2
 
203c3cd
 
 
6ded56f
203c3cd
6ded56f
437fc15
a572fd2
 
203c3cd
437fc15
a572fd2
437fc15
a572fd2
6355b7b
 
5100e68
203c3cd
a572fd2
203c3cd
 
 
 
 
 
 
 
 
6355b7b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
# Copyright: DAMO Academy, Alibaba Group
# By Xuan Phi Nguyen at DAMO Academy, Alibaba Group

# Description:
"""
VLLM-based demo script to launch Language chat model for Southeast Asian Languages
"""


import os
import numpy as np
import argparse
import torch
import gradio as gr
from typing import Any, Iterator
from typing import Iterator, List, Optional, Tuple
import filelock
import glob
import json

from gradio_client.documentation import document, set_documentation_group

from typing import List, Optional, Union, Dict, Tuple
from tqdm.auto import tqdm
from huggingface_hub import snapshot_download


# @@ environments ================

DEBUG = bool(int(os.environ.get("DEBUG", "1")))
BLOCK_ZH = bool(int(os.environ.get("BLOCK_ZH", "1")))
# for lang block, wether to block in history too
LANG_BLOCK_HISTORY = bool(int(os.environ.get("LANG_BLOCK_HISTORY", "0")))
TENSOR_PARALLEL = int(os.environ.get("TENSOR_PARALLEL", "1"))
DTYPE = os.environ.get("DTYPE", "bfloat16")

# ! (no debug) whether to download HF_MODEL_NAME and save to MODEL_PATH
DOWNLOAD_SNAPSHOT = bool(int(os.environ.get("DOWNLOAD_SNAPSHOT", "0")))
LOG_RESPONSE = bool(int(os.environ.get("LOG_RESPONSE", "0")))
# ! show model path in the demo page, only for internal
DISPLAY_MODEL_PATH = bool(int(os.environ.get("DISPLAY_MODEL_PATH", "1")))

# ! uploaded model path, will be downloaded to MODEL_PATH
HF_MODEL_NAME = os.environ.get("HF_MODEL_NAME", "DAMO-NLP-SG/seal-13b-chat-a")
# ! if model is private, need HF_TOKEN to access the model
HF_TOKEN = os.environ.get("HF_TOKEN", None)
# ! path where the model is downloaded, either on ./ or persistent disc
MODEL_PATH = os.environ.get("MODEL_PATH", "./seal-13b-chat-a")

# ! list of keywords to disabled as security measures to comply with local regulation
KEYWORDS = os.environ.get("KEYWORDS", "").strip()
KEYWORDS = KEYWORDS.split(";") if len(KEYWORDS) > 0 else []
KEYWORDS = [x.lower() for x in KEYWORDS]

# gradio config
PORT = int(os.environ.get("PORT", "7860"))
# how many iterations to yield response
STREAM_YIELD_MULTIPLE = int(os.environ.get("STREAM_YIELD_MULTIPLE", "1"))
# how many iterations to perform safety check on response
STREAM_CHECK_MULTIPLE = int(os.environ.get("STREAM_CHECK_MULTIPLE", "0"))

# self explanatory
MAX_TOKENS = int(os.environ.get("MAX_TOKENS", "2048"))
TEMPERATURE = float(os.environ.get("TEMPERATURE", "0.1"))
FREQUENCE_PENALTY = float(os.environ.get("FREQUENCE_PENALTY", "0.4"))
gpu_memory_utilization = float(os.environ.get("gpu_memory_utilization", "0.9"))

# whether to enable quantization, currently not in use
QUANTIZATION = str(os.environ.get("QUANTIZATION", ""))


"""
Internal instructions of how to configure the DEMO

1. Upload SFT model as a model to huggingface: hugginface/models/seal_13b_a
2. If the model weights is private, set HF_TOKEN=<your private hf token> in https://huggingface.co/spaces/????/?????/settings
3. space config env: `HF_MODEL_NAME=DAMO-NLP-SG/seal-13b-chat-a` or the underlining model
4. If enable persistent storage: set
HF_HOME=/data/.huggingface
MODEL_PATH=/data/.huggingface/seal-13b-chat-a
if not:
MODEL_PATH=./seal-13b-chat-a

"""


# ==============================
print(f'DEBUG mode: {DEBUG}')
print(f'Torch version: {torch.__version__}')
try:
    print(f'Torch CUDA version: {torch.version.cuda}')
except Exception as e:
    print(f'Failed to print cuda version: {e}')

try:
    compute_capability = torch.cuda.get_device_capability()
    print(f'Torch CUDA compute_capability: {compute_capability}')
except Exception as e:
    print(f'Failed to print compute_capability version: {e}')


# @@ constants ================

DTYPES = {
    'float16': torch.float16,
    'bfloat16': torch.bfloat16
}

llm = None
demo = None


BOS_TOKEN = '<s>'
EOS_TOKEN = '</s>'

B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"

SYSTEM_PROMPT_1 = """You are a multilingual, helpful, respectful and honest assistant. Your name is SeaLLM and you are built by DAMO Academy, Alibaba Group. \
Please always answer as helpfully as possible, while being safe. Your \
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure \
that your responses are socially unbiased and positive in nature.

If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
correct. If you don't know the answer to a question, please don't share false information.

As a multilingual assistant, you must respond and follow instructions in the native language of the user by default, unless told otherwise. \
Your response should adapt to the norms and customs of the respective language and culture.
"""

# ============ CONSTANT ============
# https://github.com/gradio-app/gradio/issues/884
MODEL_NAME = "SeaLLM-13B"
MODEL_TITLE = "SeaLLM-13B - An Assistant for Southeast Asian Languages"

MODEL_TITLE = """
<div class="container" style="
    align-items: center;
    justify-content: center;
    display: flex;
">
    <div class="image" >
        <img src="file/seal_logo.png" style="
            max-width: 10em;
            max-height: 5%;
            height: 3em;
            width: 3em;
            float: left;
            margin-left: auto;
        ">
      </div>
      <div class="text" style="
            padding-left: 20px;
            padding-top: 1%;
            float: left;
        ">
      <h1>SeaLLM-13B - An Assistant for Southeast Asian Languages</h1>
      </div>
</div>
"""
MODEL_DESC = """
<span style="font-size: larger">
This is SeaLLM-13B - a chatbot assistant optimized for Southeast Asian Languages. It can produce helpful responses in English 🇬🇧, Vietnamese 🇻🇳, Indonesian 🇮🇩 and Thai 🇹🇭.
</span>
<br>
<span style="color: red">
NOTICE: The chatbot may produce inaccurate and harmful information about people, places, or facts.
<u style="color: red">By using our service, you are required to agree to the following terms:</u><br>
<ul>
<li style="color: red">You must not use our service to generate any harmful, unethical or illegal content that violates locally applicable and international laws or regulations, including but not limited to hate speech, violence, pornography, deception!</li>
<li style="color: red">The service collects user dialogue data for testing and performance improvement, and reserves the right to distribute it under <a href="https://creativecommons.org/licenses/by/4.0/">Creative Commons Attribution (CC-BY)</a> or similar license.</li>
</ul>
</span>

""".strip()


cite_markdown = """
## Citation
If you find our project useful, hope you can star our repo and cite our paper as follows:
```
@article{damonlpsg2023seallm,
  author = {Xuan-Phi Nguyen*, Wenxuan Zhang*, Xin Li*, Sharifah Mahani Aljunied*, Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue Deng, Sen Yang, Chaoqun Liu, Hang Zhang, Lidong Bing},
  title = {SeaLLMs - Large Language Models for Southeast Asia},
  year = 2023,
}
```
"""

path_markdown = """
#### Model path:
{model_path}
"""


def _detect_lang(text):
    # Disable language that may have safety risk
    from langdetect import detect as detect_lang
    dlang = None
    try:
        dlang = detect_lang(text)
    except Exception as e:
        print(f'Error: {e}')
        if "No features in text." in str(e):
            return "en"
        else:
            return "zh"
    return dlang


def custom_hf_model_weights_iterator(
    model_name_or_path: str,
    cache_dir: Optional[str] = None,
    use_np_cache: bool = False,
) -> Iterator[Tuple[str, torch.Tensor]]:
    # ! if use vllm==0.1.4, use this to augment hf_model_weights_iterator loader
    from vllm.model_executor.weight_utils import Disabledtqdm
    # Prepare file lock directory to prevent multiple processes from
    # downloading the same model weights at the same time.
    lock_dir = cache_dir if cache_dir is not None else "/tmp"
    lock_file_name = model_name_or_path.replace("/", "-") + ".lock"
    lock = filelock.FileLock(os.path.join(lock_dir, lock_file_name))

    # Download model weights from huggingface.
    is_local = os.path.isdir(model_name_or_path)
    if not is_local:
        with lock:
            hf_folder = snapshot_download(model_name_or_path,
                                          allow_patterns="*.bin",
                                          cache_dir=cache_dir,
                                          local_files_only=True,
                                          tqdm_class=Disabledtqdm)
    else:
        hf_folder = model_name_or_path

    hf_bin_files = [
        x for x in glob.glob(os.path.join(hf_folder, "*model*.bin"))
        if not x.endswith("training_args.bin")
    ]
    hf_safetensors_files = [
        x for x in glob.glob(os.path.join(hf_folder, "*model*.safetensors"))
        if not x.endswith("training_args.bin")
    ]

    if use_np_cache:
        # Convert the model weights from torch tensors to numpy arrays for
        # faster loading.
        np_folder = os.path.join(hf_folder, "np")
        os.makedirs(np_folder, exist_ok=True)
        weight_names_file = os.path.join(np_folder, "weight_names.json")
        with lock:
            if not os.path.exists(weight_names_file):
                weight_names = []
                for bin_file in hf_bin_files:
                    state = torch.load(bin_file, map_location="cpu")
                    for name, param in state.items():
                        param_path = os.path.join(np_folder, name)
                        with open(param_path, "wb") as f:
                            np.save(f, param.cpu().detach().numpy())
                        weight_names.append(name)
                with open(weight_names_file, "w") as f:
                    json.dump(weight_names, f)

        with open(weight_names_file, "r") as f:
            weight_names = json.load(f)

        for name in weight_names:
            param_path = os.path.join(np_folder, name)
            with open(param_path, "rb") as f:
                param = np.load(f)
            yield name, torch.from_numpy(param)
    else:
        if len(hf_bin_files) > 0:
            print(F'Load bin files: {hf_bin_files}')
            for bin_file in hf_bin_files:
                state = torch.load(bin_file, map_location="cpu")
                for name, param in state.items():
                    yield name, param
                del state
                torch.cuda.empty_cache()
        elif len(hf_safetensors_files) > 0:
            print(F'Load safetensor files: {hf_safetensors_files}')
            from safetensors.torch import load_file
            for safe_file in hf_safetensors_files:
                # state = torch.load(bin_file, map_location="cpu")
                state = load_file(safe_file)
                for name, param in state.items():
                    yield name, param
                del state
                torch.cuda.empty_cache()
        else:
            raise ValueError(f'no files available either bin or safe')


def convert_pyslice_to_tensor(x: Any) -> torch.Tensor:
    """convert PySafeSlice object from safetensors to torch.Tensor

    PySafeSlice object supports indexing, which is done before loading the
    actual tensor and can reduce the amount of memory being read into the
    memory. However, it does not support more advanced functionalities
    like `.view()` or `.t()`. Therefore, if we need to modify the loaded
    tensor with these more complicated operators, we need to convert to
    tensor first.
    """
    if not isinstance(x, torch.Tensor):
        x = x[:]
    return x


def load_padded_tensor_parallel_vocab(
    param: torch.Tensor,
    loaded_weight: Any,  # `torch.Tensor` or `PySafeSlice`
    tensor_model_parallel_rank: int,
) -> None:
    shard_size = param.shape[0]
    start_idx = tensor_model_parallel_rank * shard_size
    end_idx = (tensor_model_parallel_rank + 1) * shard_size
    loaded_weight = loaded_weight[start_idx:end_idx]
    loaded_weight = convert_pyslice_to_tensor(loaded_weight)
    param[:loaded_weight.shape[0]].copy_(loaded_weight)


def llama_load_weights(
        self,
        model_name_or_path: str,
        cache_dir: Optional[str] = None,
        use_np_cache: bool = False,
        load_format: str = "auto",
        revision: Optional[str] = None
):
    # if use vllm==0.1.4
    from vllm.model_executor.weight_utils import (
        load_tensor_parallel_weights
    )
    from vllm.model_executor.parallel_utils.parallel_state import (
        get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
    tp_size = get_tensor_model_parallel_world_size()
    tensor_model_parallel_rank = get_tensor_model_parallel_rank()

    q_proj_shard_size = (self.config.hidden_size // tp_size)
    kv_proj_shard_size = (self.config.hidden_size //
                            self.config.num_attention_heads *
                            getattr(self.config, "num_key_value_heads", self.config.num_attention_heads) // tp_size)
    attention_weight_specs = [
        # (weight_name, shard_size, offset)
        ("q_proj", q_proj_shard_size, 0),
        ("k_proj", kv_proj_shard_size, q_proj_shard_size),
        ("v_proj", kv_proj_shard_size,
            q_proj_shard_size + kv_proj_shard_size),
    ]
    state_dict = self.state_dict()
    need_to_load = len(state_dict)
    loaded = 0
    iterator = custom_hf_model_weights_iterator(model_name_or_path, cache_dir, use_np_cache)

    for name, loaded_weight in iterator:
        if "rotary_emb.inv_freq" in name:
            continue

        if "embed_tokens" in name or "lm_head" in name:
            param = state_dict[name]
            # Consider padding in the vocab size.
            padded_vocab_size = (param.shape[0] * tp_size)
            # num_extra_rows = padded_vocab_size - self.config.vocab_size
            num_extra_rows = padded_vocab_size - loaded_weight.size(0)
            load_size = loaded_weight.size()
            extra_rows = torch.empty(num_extra_rows,
                                        loaded_weight.shape[1])
            extra_rows = extra_rows.to(loaded_weight)
            loaded_weight = torch.cat([loaded_weight, extra_rows], dim=0)
            if num_extra_rows > 0:
                print(f'Add empty to {num_extra_rows} extra row for {name}')
            print(f'Load: {name} | {padded_vocab_size=} | {self.config.vocab_size=} | {num_extra_rows=} | {param.size()=} | {loaded_weight.size()=} | {load_size=}')

        is_attention_weight = False
        for weight_name, shard_size, offset in attention_weight_specs:
            if weight_name not in name or "qkv_proj" in name:
                continue
            param = state_dict[name.replace(weight_name, "qkv_proj")]

            loaded_weight = loaded_weight[
                shard_size * tensor_model_parallel_rank:shard_size *
                (tensor_model_parallel_rank + 1)]
            param_slice = param.data[offset:offset + shard_size]
            assert param_slice.shape == loaded_weight.shape

            param_slice.copy_(loaded_weight)
            loaded += 1.0 / 3
            is_attention_weight = True
            break
        if is_attention_weight:
            continue
            
        # ! qkv_proj is sharded differently if concatenated into qkv
        # qkv:      qqqq kkkk vvvv
        # lweight:  qq0qq1 kk0kk1 vv0vv1
        # q_shard_size: hidden_size // tp_size = qq
        # qkv_s0:   qq0_kk0_vv0
        # qkv_s1:   qq1_kk1_vv1
        if "qkv_proj" in name:
            param = state_dict[name]
            # loaded_weight
            qsize = self.config.hidden_size
            kvsize = self.config.hidden_size // self.config.num_attention_heads * getattr(self.config, "num_key_value_heads", self.config.num_attention_heads)
            q_offsets = (
                q_proj_shard_size * tensor_model_parallel_rank, 
                q_proj_shard_size * (tensor_model_parallel_rank + 1)
            )
            k_offsets = (
                qsize + kv_proj_shard_size * tensor_model_parallel_rank, 
                qsize + kv_proj_shard_size * (tensor_model_parallel_rank + 1)
            )
            v_offsets = (
                qsize + kvsize + kv_proj_shard_size * tensor_model_parallel_rank, 
                qsize + kvsize + kv_proj_shard_size * (tensor_model_parallel_rank + 1)
            )
            _loaded_weight = torch.cat(
                [
                    loaded_weight[q_offsets[0]:q_offsets[1]],
                    loaded_weight[k_offsets[0]:k_offsets[1]],
                    loaded_weight[v_offsets[0]:v_offsets[1]],
                ], 0
            )
            assert param.shape == _loaded_weight.shape, f'{param.shape=} != {_loaded_weight.shape=}'
            param.data.copy_(_loaded_weight)
            loaded += 1.0
            is_attention_weight = True
        if is_attention_weight:
            continue


        is_gate_up_weight = False
        for stride_id, weight_name in enumerate(["gate_proj", "up_proj"]):
            if weight_name not in name or "gate_up_proj" in name:
                continue
            param = state_dict[name.replace(weight_name, "gate_up_proj")]
            shard_size = param.shape[0] // 2
            loaded_weight = loaded_weight[
                shard_size * tensor_model_parallel_rank:shard_size *
                (tensor_model_parallel_rank + 1)]
            param_slice = param.data[shard_size * stride_id:shard_size *
                                        (stride_id + 1)]
            assert param_slice.shape == loaded_weight.shape
            param_slice.copy_(loaded_weight)
            loaded += 1.0 / 2
            is_gate_up_weight = True
            break
        if is_gate_up_weight:
            continue
            
        if "gate_up_proj" in name:
            param = state_dict[name]
            shard_size = param.shape[0] // 2
            intermediate_size = self.config.intermediate_size
            g_offsets = (
                shard_size * tensor_model_parallel_rank, 
                shard_size * (tensor_model_parallel_rank + 1)
            )
            u_offsets = (
                intermediate_size + shard_size * tensor_model_parallel_rank, 
                intermediate_size + shard_size * (tensor_model_parallel_rank + 1)
            )
            _loaded_weight = torch.cat(
                [
                    loaded_weight[g_offsets[0]:g_offsets[1]],
                    loaded_weight[u_offsets[0]:u_offsets[1]],
                ], 0
            )
            assert param.shape == _loaded_weight.shape
            param.data.copy_(_loaded_weight)
            loaded += 1.0
            is_gate_up_weight = True
        if is_gate_up_weight:
            continue


        param = state_dict[name]
        load_tensor_parallel_weights(param, loaded_weight, name,
                                        self._column_parallel_weights,
                                        self._row_parallel_weights,
                                        tensor_model_parallel_rank)
        loaded += 1

    if np.abs(loaded - need_to_load) < 0.01:
        print(f'WARNING: only {loaded} params loaded out of {need_to_load}')
    else:
        print(f'Loaded all {loaded} params loaded out of {need_to_load}')


def new_llama_load_weights(
    self,
    model_name_or_path: str,
    cache_dir: Optional[str] = None,
    load_format: str = "auto",
    revision: Optional[str] = None
):
    # If use newest vllm, not been thoroughly tested yet.
    from vllm.model_executor.weight_utils import (
        load_tensor_parallel_weights, hf_model_weights_iterator
    )
    from vllm.model_executor.parallel_utils.parallel_state import (
        get_tensor_model_parallel_rank, get_tensor_model_parallel_world_size)
    
    if self.quant_config is None:
        weight_suffixes = ["weight"]
    else:
        weight_suffixes = self.quant_config.get_tp_tensor_names()

    column_parallel_weights: List[str] = []
    for layer in self._column_parallel_layers:
        for suffix in weight_suffixes:
            column_parallel_weights.append(f"{layer}.{suffix}")
    row_parallel_weights: List[str] = []
    for layer in self._row_parallel_layers:
        for suffix in weight_suffixes:
            row_parallel_weights.append(f"{layer}.{suffix}")

    tp_size = get_tensor_model_parallel_world_size()
    tp_rank = get_tensor_model_parallel_rank()
    assert tp_size == 1, f'tensorparallel >=2 not allowed. {tp_size}'
    q_proj_shard_size = (self.config.hidden_size // tp_size)
    num_kv_heads_replicas = max(1,
                                tp_size // self.config.num_key_value_heads)
    num_kv_heads_per_gpu = max(1,
                                self.config.num_key_value_heads // tp_size)
    kv_proj_shard_size = (self.config.hidden_size //
                            self.config.num_attention_heads *
                            num_kv_heads_per_gpu)
    attention_weight_specs = [
        # (weight_name, shard_size, offset)
        ("q_proj", q_proj_shard_size, 0),
        ("k_proj", kv_proj_shard_size, q_proj_shard_size),
        ("v_proj", kv_proj_shard_size,
            q_proj_shard_size + kv_proj_shard_size),
    ]
    state_dict = self.state_dict()
    need_to_load = len(state_dict)
    loaded = 0

    for name, loaded_weight in hf_model_weights_iterator(
            model_name_or_path, cache_dir, load_format, revision):
        if "rotary_emb.inv_freq" in name:
            continue

        is_packed = False
        is_transposed = False
        if self.quant_config is not None:
            is_packed = self.quant_config.is_packed(name)
            is_transposed = self.quant_config.is_transposed(name)
        if is_transposed:
            loaded_weight = convert_pyslice_to_tensor(loaded_weight)
            loaded_weight = loaded_weight.T

        is_attention_weight = False
        for weight_name, shard_size, offset in attention_weight_specs:
            if weight_name not in name or "qkv_proj" in name:
                continue
            param = state_dict[name.replace(weight_name, "qkv_proj")]
            if is_transposed:
                param = param.T

            if is_packed:
                shard_size //= self.quant_config.pack_factor
                offset //= self.quant_config.pack_factor

            if weight_name in ["k_proj", "v_proj"]:
                shard_id = tp_rank // num_kv_heads_replicas
            else:
                shard_id = tp_rank
            loaded_weight = loaded_weight[shard_size *
                                            shard_id:shard_size *
                                            (shard_id + 1)]
            param_slice = param.data[offset:offset + shard_size]
            assert param_slice.shape == loaded_weight.shape

            param_slice.copy_(loaded_weight)
            loaded += 1.0 / 3
            is_attention_weight = True
            break
        if is_attention_weight:
            continue
        
        # TODO: need to figure out to do sharding with qkv_proj fused

        is_gate_up_weight = False
        for stride_id, weight_name in enumerate(["gate_proj", "up_proj"]):
            if weight_name not in name or "gate_up_proj" in name:
                continue
            param = state_dict[name.replace(weight_name, "gate_up_proj")]
            if is_transposed:
                param = param.T

            shard_size = param.shape[0] // 2
            loaded_weight = loaded_weight[shard_size * tp_rank:shard_size *
                                            (tp_rank + 1)]
            param_slice = param.data[shard_size * stride_id:shard_size *
                                        (stride_id + 1)]
            assert param_slice.shape == loaded_weight.shape
            param_slice.copy_(loaded_weight)
            loaded += 1.0 / 2
            is_gate_up_weight = True
            break
        if is_gate_up_weight:
            continue

        # TODO: need to figure out to do sharding with gate_up_proj fused

        param = state_dict[name]
        if is_transposed:
            param = param.T

        if "embed_tokens" in name or "lm_head" in name:
            load_padded_tensor_parallel_vocab(param, loaded_weight,
                                                tp_rank)
            loaded += 1
            continue

        load_tensor_parallel_weights(param, loaded_weight, name,
                                        column_parallel_weights,
                                        row_parallel_weights, tp_rank)
        loaded += 1

    if np.abs(loaded - need_to_load) < 0.01:
        print(f'WARNING: only {loaded} params loaded out of {need_to_load}')
    else:
        print(f'Loaded all {loaded} params loaded out of {need_to_load}')


# Reassign LlamaForCausalLM.load_weights with llama_load_weights
if not DEBUG:
    
    try:
        import vllm
        from vllm.model_executor.model_loader import _MODEL_REGISTRY
        from vllm.model_executor.models import LlamaForCausalLM

        _MODEL_REGISTRY['FasterLlamaForCausalLM'] = LlamaForCausalLM
        if vllm.__version__ == "0.1.4":
            LlamaForCausalLM.load_weights = llama_load_weights
        else:
            LlamaForCausalLM.load_weights = new_llama_load_weights

        if DTYPE == "bfloat16":
            try:
                compute_capability = torch.cuda.get_device_capability()
                if compute_capability[0] < 8:
                    gpu_name = torch.cuda.get_device_name()
                    print(
                        "Bfloat16 is only supported on GPUs with compute capability "
                        f"of at least 8.0. Your {gpu_name} GPU has compute capability "
                        f"{compute_capability[0]}.{compute_capability[1]}. --> Move to FLOAT16")
                    DTYPE = "float16"
            except Exception as e:
                print(f'Unable to obtain compute_capability: {e}')
    except Exception as e:
        print(f'Failing import and reconfigure VLLM: {str(e)}')
    

# ! ==================================================================

set_documentation_group("component")


RES_PRINTED = False

def llama_chat_sys_input_seq_constructor(text, sys_prompt=SYSTEM_PROMPT_1, bos_token=BOS_TOKEN, eos_token=EOS_TOKEN):
    return f"{bos_token}{B_INST} {B_SYS} {sys_prompt} {E_SYS} {text} {E_INST}"


def llama_chat_multiturn_sys_input_seq_constructor(
    message: str,
    history: List[Tuple[str, str]], 
    sys_prompt=SYSTEM_PROMPT_1, 
    bos_token=BOS_TOKEN, 
    eos_token=EOS_TOKEN,
):
    """
    ```
        <bos>[INST] B_SYS SytemPrompt E_SYS Prompt [/INST] Answer <eos>
        <bos>[INST] Prompt [/INST] Answer <eos>
        <bos>[INST] Prompt [/INST]
    ```
    """
    text = ''
    for i, (prompt, res) in enumerate(history):
        if i == 0:
            text += f"{bos_token}{B_INST} {B_SYS} {sys_prompt} {E_SYS} {prompt} {E_INST}"
        else:
            text += f"{bos_token}{B_INST} {prompt} {E_INST}"

        if res is not None:
            text += f" {res} {eos_token} "
    if len(history) == 0 or text.strip() == '':
        text = f"{bos_token}{B_INST} {B_SYS} {sys_prompt} {E_SYS} {message} {E_INST}"
    else:
        text += f"{bos_token}{B_INST} {message} {E_INST}"
    return text


@document()
class ChatBot(gr.Chatbot):
    def _postprocess_chat_messages(
        self, chat_message
    ):
        x = super()._postprocess_chat_messages(chat_message)
        if isinstance(x, str):
            x = x.strip().replace("\n", "<br>")
        return x


from gradio.components import Button
from gradio.events import Dependency, EventListenerMethod

# replace events so that submit button is disabled during generation, if stop_btn not found
# this prevent weird behavior
def _setup_stop_events(
    self, event_triggers: list[EventListenerMethod], event_to_cancel: Dependency
) -> None:
    event_triggers = event_triggers if isinstance(event_triggers, (list, tuple)) else [event_triggers]
    if self.stop_btn and self.is_generator:
        if self.submit_btn:
            for event_trigger in event_triggers:
                event_trigger(
                    lambda: (
                        Button.update(visible=False),
                        Button.update(visible=True),
                    ),
                    None,
                    [self.submit_btn, self.stop_btn],
                    api_name=False,
                    queue=False,
                )
            event_to_cancel.then(
                lambda: (Button.update(visible=True), Button.update(visible=False)),
                None,
                [self.submit_btn, self.stop_btn],
                api_name=False,
                queue=False,
            )
        else:
            for event_trigger in event_triggers:
                event_trigger(
                    lambda: Button.update(visible=True),
                    None,
                    [self.stop_btn],
                    api_name=False,
                    queue=False,
                )
            event_to_cancel.then(
                lambda: Button.update(visible=False),
                None,
                [self.stop_btn],
                api_name=False,
                queue=False,
            )
        self.stop_btn.click(
            None,
            None,
            None,
            cancels=event_to_cancel,
            api_name=False,
        )
    else:
        if self.submit_btn:
            for event_trigger in event_triggers:
                event_trigger(
                    lambda: Button.update(interactive=False),
                    None,
                    [self.submit_btn],
                    api_name=False,
                    queue=False,
                )
            event_to_cancel.then(
                lambda: Button.update(interactive=True),
                None,
                [self.submit_btn],
                api_name=False,
                queue=False,
            )
    # upon clear, cancel the submit event as well
    if self.clear_btn:
        self.clear_btn.click(
            lambda: ([], [], None, Button.update(interactive=True)),
            None,
            [self.chatbot, self.chatbot_state, self.saved_input, self.submit_btn],
            queue=False,
            api_name=False,
            cancels=event_to_cancel,
        )

# TODO: reconfigure clear button as stop and clear button
def _setup_events(self) -> None:
    has_on = False
    try:
        from gradio.events import Dependency, EventListenerMethod, on
        has_on = True
    except ImportError as ie:
        has_on = False
    submit_fn = self._stream_fn if self.is_generator else self._submit_fn


    if has_on:
        # new version
        submit_triggers = (
            [self.textbox.submit, self.submit_btn.click]
            if self.submit_btn
            else [self.textbox.submit]
        )
        submit_event = (
            on(
                submit_triggers,
                self._clear_and_save_textbox,
                [self.textbox],
                [self.textbox, self.saved_input],
                api_name=False,
                queue=False,
            )
            .then(
                self._display_input,
                [self.saved_input, self.chatbot_state],
                [self.chatbot, self.chatbot_state],
                api_name=False,
                queue=False,
            )
            .then(
                submit_fn,
                [self.saved_input, self.chatbot_state] + self.additional_inputs,
                [self.chatbot, self.chatbot_state],
                api_name=False,
            )
        )
        self._setup_stop_events(submit_triggers, submit_event)
    else:
        raise ValueError(f'Better install new gradio version than 3.44.0')

    if self.retry_btn:
        retry_event = (
            self.retry_btn.click(
                self._delete_prev_fn,
                [self.chatbot_state],
                [self.chatbot, self.saved_input, self.chatbot_state],
                api_name=False,
                queue=False,
            )
            .then(
                self._display_input,
                [self.saved_input, self.chatbot_state],
                [self.chatbot, self.chatbot_state],
                api_name=False,
                queue=False,
            )
            .then(
                submit_fn,
                [self.saved_input, self.chatbot_state] + self.additional_inputs,
                [self.chatbot, self.chatbot_state],
                api_name=False,
            )
        )
        self._setup_stop_events([self.retry_btn.click], retry_event)

    if self.undo_btn:
        self.undo_btn.click(
            self._delete_prev_fn,
            [self.chatbot_state],
            [self.chatbot, self.saved_input, self.chatbot_state],
            api_name=False,
            queue=False,
        ).then(
            lambda x: x,
            [self.saved_input],
            [self.textbox],
            api_name=False,
            queue=False,
        )

    # Reconfigure clear_btn to stop and clear text box
    # if self.clear_btn:
    #     self.clear_btn.click(
    #         lambda: ([], [], None),
    #         None,
    #         [self.chatbot, self.chatbot_state, self.saved_input],
    #         queue=False,
    #         api_name=False,
    #         cancels=submit_event,
    #     )


# replace
gr.ChatInterface._setup_stop_events = _setup_stop_events
gr.ChatInterface._setup_events = _setup_events


def vllm_abort(self: Any):
    from vllm.sequence import SequenceStatus
    scheduler = self.llm_engine.scheduler
    for state_queue in [scheduler.waiting, scheduler.running, scheduler.swapped]:
        for seq_group in state_queue:
            # if seq_group.request_id == request_id:
            # Remove the sequence group from the state queue.
            state_queue.remove(seq_group)
            for seq in seq_group.seqs:
                if seq.is_finished():
                    continue
                scheduler.free_seq(seq, SequenceStatus.FINISHED_ABORTED)

def _vllm_run_engine(self: Any, use_tqdm: bool = False) -> Dict[str, Any]:
    from vllm.outputs import RequestOutput
    # Initialize tqdm.
    if use_tqdm:
        num_requests = self.llm_engine.get_num_unfinished_requests()
        pbar = tqdm(total=num_requests, desc="Processed prompts")
    # Run the engine.
    outputs: Dict[str, RequestOutput] = {}
    while self.llm_engine.has_unfinished_requests():
        step_outputs = self.llm_engine.step()
        for output in step_outputs:
            outputs[output.request_id] = output
        if len(outputs) > 0:
            yield outputs



def vllm_generate_stream(
    self: Any,
    prompts: Optional[Union[str, List[str]]] = None,
    sampling_params: Optional[Any] = None,
    prompt_token_ids: Optional[List[List[int]]] = None,
    use_tqdm: bool = False,
) -> Dict[str, Any]:
    """Generates the completions for the input prompts.

    NOTE: This class automatically batches the given prompts, considering
    the memory constraint. For the best performance, put all of your prompts
    into a single list and pass it to this method.

    Args:
        prompts: A list of prompts to generate completions for.
        sampling_params: The sampling parameters for text generation. If
            None, we use the default sampling parameters.
        prompt_token_ids: A list of token IDs for the prompts. If None, we
            use the tokenizer to convert the prompts to token IDs.
        use_tqdm: Whether to use tqdm to display the progress bar.

    Returns:
        A list of `RequestOutput` objects containing the generated
        completions in the same order as the input prompts.
    """
    from vllm import LLM, SamplingParams
    if prompts is None and prompt_token_ids is None:
        raise ValueError("Either prompts or prompt_token_ids must be "
                            "provided.")
    if isinstance(prompts, str):
        # Convert a single prompt to a list.
        prompts = [prompts]
    if prompts is not None and prompt_token_ids is not None:
        if len(prompts) != len(prompt_token_ids):
            raise ValueError("The lengths of prompts and prompt_token_ids "
                                "must be the same.")
    if sampling_params is None:
        # Use default sampling params.
        sampling_params = SamplingParams()

    # Add requests to the engine.
    if prompts is not None:
        num_requests = len(prompts)
    else:
        num_requests = len(prompt_token_ids)
    for i in range(num_requests):
        prompt = prompts[i] if prompts is not None else None
        if prompt_token_ids is None:
            token_ids = None
        else:
            token_ids = prompt_token_ids[i]
        self._add_request(prompt, sampling_params, token_ids)
    # return self._run_engine(use_tqdm)
    yield from _vllm_run_engine(self, use_tqdm)



# ! avoid saying 
LANG_BLOCK_MESSAGE = """Sorry, the language you have asked is currently not supported. If you have questions in other supported languages, I'll be glad to help. \
Please also consider clearing the chat box for a better experience."""

KEYWORD_BLOCK_MESSAGE = "Sorry, I cannot fulfill your request. If you have any unrelated question, I'll be glad to help."

def block_zh(
    message: str, 
    history: List[Tuple[str, str]] = None,
) -> str:
    # relieve history base block
    if LANG_BLOCK_HISTORY and history is not None and any((LANG_BLOCK_MESSAGE in x[1].strip()) for x in history):
        return True
    elif 'zh' in _detect_lang(message):
        print(f'Detect zh: {message}')
        return True
    else:
        return False


def log_responses(history, message, response):
    pass


def safety_check(text, history=None, ) -> Optional[str]:
    """
    Despite our effort in safety tuning and red teaming, our models may still generate harmful or illegal content.
    This provides an additional security measure to enhance safety and compliance with local regulations.
    """
    if BLOCK_ZH:
        if history is not None:
            if block_zh(text, history):
                return LANG_BLOCK_MESSAGE
        else:
            if "zh" in _detect_lang(text):
                return LANG_BLOCK_MESSAGE

    if len(KEYWORDS) > 0 and any(x in text.lower() for x in KEYWORDS):
        return KEYWORD_BLOCK_MESSAGE

    return None


def chat_response_stream_multiturn(
    message: str, 
    history: List[Tuple[str, str]], 
    temperature: float, 
    max_tokens: int, 
    frequency_penalty: float,
    system_prompt: Optional[str] = SYSTEM_PROMPT_1
) -> str:
    from vllm import LLM, SamplingParams
    """Build multi turn
    <bos>[INST] B_SYS SytemPrompt E_SYS Prompt [/INST] Answer <eos>
    <bos>[INST] Prompt [/INST] Answer <eos>
    <bos>[INST] Prompt [/INST]

    message is incoming prompt
    history don't have the current messauge
    """
    global llm, RES_PRINTED
    assert llm is not None
    assert system_prompt.strip() != '', f'system prompt is empty'
    # force removing all 
    vllm_abort(llm)

    temperature = float(temperature)
    frequency_penalty = float(frequency_penalty)
    max_tokens = int(max_tokens)

    message = message.strip()

    message_safety = safety_check(message, history=history)
    if message_safety is not None:
        yield message_safety
        return

    # history will be appended with message later on
    full_prompt = llama_chat_multiturn_sys_input_seq_constructor(
        message, history, sys_prompt=system_prompt
    )

    sampling_params = SamplingParams(
        temperature=temperature, max_tokens=max_tokens,
        frequency_penalty=frequency_penalty,
    )
    cur_out = None

    for j, gen in enumerate(vllm_generate_stream(llm, full_prompt, sampling_params)):
        if cur_out is not None and (STREAM_YIELD_MULTIPLE < 1 or j % STREAM_YIELD_MULTIPLE == 0) and j > 0:
            # optionally check safety, and respond
            if STREAM_CHECK_MULTIPLE > 0 and j % STREAM_CHECK_MULTIPLE == 0:
                message_safety = safety_check(cur_out, history=None)
                if message_safety is not None:
                    yield message_safety
                    return

            yield cur_out
        assert len(gen) == 1, f'{gen}'
        item = next(iter(gen.values()))
        cur_out = item.outputs[0].text
        
    print(f'{full_prompt}<<<{cur_out}>>>\n\n')
    if cur_out is not None:
        yield cur_out
    
    message_safety = safety_check(cur_out, history=None)
    if message_safety is not None:
        yield message_safety
        return
    
    if LOG_RESPONSE:
        log_responses(history, message, cur_out)



def debug_chat_response_echo(
    message: str, 
    history: List[Tuple[str, str]], 
    temperature: float = 0.0, 
    max_tokens: int = 4096, 
    frequency_penalty: float = 0.4,
    system_prompt: str = SYSTEM_PROMPT_1,
) -> str:
    import time
    time.sleep(0.5)
    yield f"repeat: {message}"


def check_model_path(model_path) -> str:
    assert os.path.exists(model_path), f'{model_path} not found'
    ckpt_info = "None"
    if os.path.isdir(model_path):
        if os.path.exists(f'{model_path}/info.txt'):
            with open(f'{model_path}/info.txt', 'r') as f:
                ckpt_info = f.read()
                print(f'Checkpoint info:\n{ckpt_info}\n-----')
        else:
            print(f'info.txt not found in {model_path}')
        print(f'model path dir: {list(os.listdir(model_path))}')
    
    return ckpt_info


def launch():
    global demo, llm, DEBUG
    model_desc = MODEL_DESC
    model_path = MODEL_PATH
    model_title = MODEL_TITLE
    hf_model_name = HF_MODEL_NAME
    tensor_parallel = TENSOR_PARALLEL
    assert tensor_parallel > 0 , f'{tensor_parallel} invalid'
    dtype = DTYPE
    sys_prompt = SYSTEM_PROMPT_1
    max_tokens = MAX_TOKENS
    temperature = TEMPERATURE
    frequence_penalty = FREQUENCE_PENALTY
    ckpt_info = "None"

    print(
        f'Launch config: {tensor_parallel=} / {dtype=} / {max_tokens} | {BLOCK_ZH=} '
        f'\n| model_title=`{model_title}` '
        f'\n| STREAM_YIELD_MULTIPLE={STREAM_YIELD_MULTIPLE} '
        f'\n| STREAM_CHECK_MULTIPLE={STREAM_CHECK_MULTIPLE} '
        f'\n| DISPLAY_MODEL_PATH={DISPLAY_MODEL_PATH} '
        f'\n| LANG_BLOCK_HISTORY={LANG_BLOCK_HISTORY} '
        f'\n| frequence_penalty={frequence_penalty} '
        f'\n| temperature={temperature} '
        f'\n| hf_model_name={hf_model_name} '
        f'\n| model_path={model_path} '
        f'\n| DOWNLOAD_SNAPSHOT={DOWNLOAD_SNAPSHOT} '
        f'\n| gpu_memory_utilization={gpu_memory_utilization} '
        f'\n| KEYWORDS={KEYWORDS} '
        f'\n| Sys={SYSTEM_PROMPT_1}'
        f'\n| Desc={model_desc}'
    )

    if DEBUG:
        model_desc += "\n<br>!!!!! This is in debug mode, responses will copy original"
        response_fn = debug_chat_response_echo
        print(f'Creating in DEBUG MODE')
    else:
        # ! load the model

        if DOWNLOAD_SNAPSHOT:
            print(f'Downloading from HF_MODEL_NAME={hf_model_name} -> {model_path}')
            if HF_TOKEN is not None:
                print(f'Load with HF_TOKEN: {HF_TOKEN}')
                snapshot_download(hf_model_name, local_dir=model_path, use_auth_token=True, token=HF_TOKEN)
            else:
                snapshot_download(hf_model_name, local_dir=model_path)

        import vllm
        from vllm import LLM

        print(F'VLLM: {vllm.__version__}')
        ckpt_info = check_model_path(model_path)

        print(f'Load path: {model_path} | {ckpt_info}')

        if QUANTIZATION == 'awq':
            print(F'Load model in int4 quantization')
            llm = LLM(model=model_path, dtype=dtype, tensor_parallel_size=tensor_parallel, gpu_memory_utilization=gpu_memory_utilization, quantization="awq")
        else:
            llm = LLM(model=model_path, dtype=dtype, tensor_parallel_size=tensor_parallel, gpu_memory_utilization=gpu_memory_utilization)

        try:
            print(llm.llm_engine.workers[0].model)
        except Exception as e:
            print(f'Cannot print model worker: {e}')

        print(f'Use system prompt:\n{sys_prompt}')

        response_fn = chat_response_stream_multiturn
        print(F'respond: {response_fn}')

    demo = gr.ChatInterface(
        response_fn,
        chatbot=ChatBot(
            label=MODEL_NAME,
            bubble_full_width=False,
            latex_delimiters=[
                { "left": "$", "right": "$", "display": False},
                { "left": "$$", "right": "$$", "display": True},
            ]
        ),
        textbox=gr.Textbox(placeholder='Type message', lines=8, max_lines=128, min_width=200),
        submit_btn=gr.Button(value='Submit', variant="primary", scale=0),
        # ! consider preventing the stop button
        stop_btn=None,
        title=f"{model_title}",
        description=f"{model_desc}",
        additional_inputs=[
            gr.Number(value=temperature, label='Temperature (higher -> more random)'), 
            gr.Number(value=max_tokens, label='Max generated tokens (increase if want more generation)'), 
            gr.Number(value=frequence_penalty, label='Frequency penalty (> 0 encourage new tokens)'), 
            # ! Remove the system prompt textbox to avoid jailbreaking
            # gr.Textbox(value=sys_prompt, label='System prompt', lines=8)
        ], 
    )
    demo.title = MODEL_NAME
    with demo:
        # gr.Markdown(warning_markdown)
        gr.Markdown(cite_markdown)
        if DISPLAY_MODEL_PATH:
            gr.Markdown(path_markdown.format(model_path=model_path))

    demo.queue()
    demo.launch(server_port=PORT)


def main():

    launch()


if __name__ == "__main__":
    main()