File size: 5,427 Bytes
8889bbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141

import os

# ! UI Markdown information

MODEL_TITLE = """
<img src="file/seammm_2.png" style="
    max-width: 10em;
    max-height: 5%;
    height: 3em;
    width: 3em;
">
<div class="text" style="
loat: left;
padding-bottom: 2%;
">
SeaLMMM - Large Multilingual Multimodal Models for Southeast Asia
</div>
"""

# <a href='https://huggingface.co/spaces/SeaLLMs/SeaLMMM-7b'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a> 
# <a href='https://huggingface.co/SeaLLMs/SeaLLM-7B-v2'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a> 
# 
MODEL_DESC = f"""
<div style='display:flex; gap: 0.25rem; '>
<a href='https://github.com/damo-nlp-sg/seallms'><img src='https://img.shields.io/badge/Github-Code-success'></a>
<a href='https://huggingface.co/spaces/SeaLLMs/SeaLLM-7B'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a> 
<a href='https://huggingface.co/SeaLLMs/SeaLMMM-7B-early'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue'></a> 
</div>
<span style="font-size: larger">
<a href="https://huggingface.co/SeaLLMs/SeaLMMM-7B-early" target="_blank">SeaLMMM-7B-early</a> - multilingual multimodal assistant for Southeast Asia. It handles <b>both</b> text-only (<a href="https://huggingface.co/SeaLLMs/SeaLLM-7B-v2" target="_blank">LLMs</a> and vision instructions (LVMs). <span style="color: red">SeaLMMM-7B has not finished training.</span>
</span>
<br>
<span>
<span style="color: red">The chatbot may produce false and harmful content!</span>
By using our service, you are required to agree to our <a href="https://huggingface.co/SeaLLMs/SeaLLM-Chat-13b/blob/main/LICENSE" target="_blank" style="color: red">Terms Of Use</a>
</span>

""".strip()

"""
By using our service, you are required to agree to our <a href="https://huggingface.co/SeaLLMs/SeaLLM-Chat-13b/blob/main/LICENSE" target="_blank" style="color: red">Terms Of Use</a>, which includes 
not to use our service to generate any harmful, inappropriate or illegal content. 
The service collects user dialogue data for testing and improvement under 
<a href="https://creativecommons.org/licenses/by/4.0/">(CC-BY)</a> or similar license. So do not enter any personal information!

"""


# MODEL_INFO = """
# <h4 style="display: hidden;">Model Name: {model_path}</h4>
# """
MODEL_INFO = ""

CITE_MARKDOWN = """
## Citation
If you find our project useful, hope you can star our repo and cite our paper as follows:
```
@article{damonlpsg2023seallm,
  author = {Xuan-Phi Nguyen*, Wenxuan Zhang*, Xin Li*, Mahani Aljunied*, Zhiqiang Hu, Chenhui Shen^, Yew Ken Chia^, Xingxuan Li, Jianyu Wang, Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue Deng, Sen Yang, Chaoqun Liu, Hang Zhang, Lidong Bing},
  title = {SeaLLMs - Large Language Models for Southeast Asia},
  year = 2023,
}
```

"""
USE_PANEL = bool(int(os.environ.get("USE_PANEL", "1")))
CHATBOT_HEIGHT = int(os.environ.get("CHATBOT_HEIGHT", "500"))

ALLOWED_PATHS = ["seammm_2.png"]


DEMOS = os.environ.get("DEMOS", "")

DEMOS = DEMOS.split(",") if DEMOS.strip() != "" else [
    "DocChatInterfaceDemo",
    "ChatInterfaceDemo",
    "TextCompletionDemo",
    # "RagChatInterfaceDemo",
    # "VisionChatInterfaceDemo",
    # "VisionDocChatInterfaceDemo",
]

# DEMOS=DocChatInterfaceDemo,ChatInterfaceDemo,RagChatInterfaceDemo,TextCompletionDemo



# ! server info

DELETE_FOLDER = os.environ.get("DELETE_FOLDER", "")
PORT = int(os.environ.get("PORT", "7860"))
PROXY = os.environ.get("PROXY", "").strip()

# ! backend info

BACKEND = os.environ.get("BACKEND", "debug")

# ! model information
# for RAG
RAG_EMBED_MODEL_NAME = os.environ.get("RAG_EMBED_MODEL_NAME", "sentence-transformers/all-MiniLM-L6-v2")
CHUNK_SIZE = int(os.environ.get("CHUNK_SIZE", "1024"))
CHUNK_OVERLAP = int(os.environ.get("CHUNK_SIZE", "50"))


SYSTEM_PROMPT = os.environ.get("SYSTEM_PROMPT", """You are a helpful, respectful, honest and safe AI assistant.""")

MAX_TOKENS = int(os.environ.get("MAX_TOKENS", "2048"))
TEMPERATURE = float(os.environ.get("TEMPERATURE", "0.1"))
# ! these values currently not used
FREQUENCE_PENALTY = float(os.environ.get("FREQUENCE_PENALTY", "0.0"))
PRESENCE_PENALTY = float(os.environ.get("PRESENCE_PENALTY", "0.0"))


# Transformers or vllm
MODEL_PATH = os.environ.get("MODEL_PATH", "mistralai/Mistral-7B-Instruct-v0.2")
MODEL_NAME = os.environ.get("MODEL_NAME", "Cool-Chatbot")
DTYPE = os.environ.get("DTYPE", "bfloat16")
DEVICE = os.environ.get("DEVICE", "cuda")

# VLLM
GPU_MEMORY_UTILIZATION = float(os.environ.get("GPU_MEMORY_UTILIZATION", "0.9"))
TENSOR_PARALLEL = int(os.environ.get("TENSOR_PARALLEL", "1"))
QUANTIZATION = str(os.environ.get("QUANTIZATION", ""))
STREAM_YIELD_MULTIPLE = int(os.environ.get("STREAM_YIELD_MULTIPLE", "1"))
# how many iterations to perform safety check on response
STREAM_CHECK_MULTIPLE = int(os.environ.get("STREAM_CHECK_MULTIPLE", "0"))

# llama.cpp
DEFAULT_CHAT_TEMPLATE = os.environ.get("DEFAULT_CHAT_TEMPLATE", "chatml")
N_CTX = int(os.environ.get("N_CTX", "4096"))
N_GPU_LAYERS = int(os.environ.get("N_GPU_LAYERS", "-1"))

# llava.llama.cpp


# Multimodal
IMAGE_TOKEN = os.environ.get("IMAGE_TOKEN", "[IMAGE]<|image|>[/IMAGE]")
IMAGE_TOKEN_INTERACTIVE = bool(int(os.environ.get("IMAGE_TOKEN_INTERACTIVE", "0")))
IMAGE_TOKEN_LENGTH = int(os.environ.get("IMAGE_TOKEN_LENGTH", "576"))
MAX_PACHES = int(os.environ.get("MAX_PACHES", "1"))